Evaluation of a Novel Optical Smartphone Blood Pressure Application

A Method Comparison Study Against Invasive Arterial Blood Pressure Monitoring in Intensive Care Unit Patients

Olivier Desebbe; Chbabou Anas; Brenton Alexander; Karim Kouz; Jean-Francois Knebel; Patrick Schoettker; Jacques Creteur; Jean-Louis Vincent; Alexandre Joosten


BMC Anesthesiol. 2022;22(259) 

In This Article


This prospective study was registered on ClinicalTrials.gov on January 28th, 2020 under the reference NCT04728477 (Principal Investigator: Alexandre Joosten). The Erasme Ethics Committee approved the study on February 2, 2021 under the reference A2020/665. The study took place between February 3 and April 1, 2021. We had written informed consent from each patient or their next of kin if a patient was unable to do it.

We included all adult patients having invasive arterial BP monitoring using a radial artery catheter for at least 48 h. Exclusion criteria were patients with an inter-arm BP difference > 10 mmHg in systolic arterial pressure (SAP) measures using a brachial cuff, patient with dementia, psychological disorders, drug or alcohol abuse unless receiving mechanically ventilation, patient with atrial fibrillation and patient with finger lesions that would alter the correct capture of signals by the mobile phone.


OptiBP™ is the name of the smartphone application used in the current study and it is an acronym of "optical blood pressure" (Biospectal Inc., Lausanne, Switzerland). This software was deployed on a Samsung Galaxy S7 smartphone (Samsung GEC, Samsung Seocho Town, Seocho-gu, Seoul, Korea). Previous validation studies have been completed that describe how this technology estimates BP from pulse wave analysis of pulse oximetry signals.[20] An algorithm (CSEMBP: optical BP monitoring) analyses smartphone-derived photo-plethysmography (PPG) signals generated by the light from the smartphone's camera flash that enters the finger, is refracted by the tissue, and is finally recorded by the smartphone camera. A brief description of the technology will be provided, but more information can be found in our prior studies: The OptiBP™ application records high-speed video sequences of PPG signal changes that are generated from volumetric changes in blood flow in the finger (Figure 1). Each pulse of a 30-s PPG signal is assigned a quality index and then averaged, thus obtaining pulse wave estimates with the highest possible quality for each period. Subsequently, each accepted pulse wave passes through a bank of time-derived filters, allowing characterization of morphological variations in the pulse at different temporal resolutions. The algorithm can provide absolute changes in BP relative to an arbitrary baseline value but requires an initial calibration procedure (using a validated BP collection method) to define this baseline value and to obtain further absolute BP values.

Figure 1.

Description of the smartphone application: Fingertip on the smartphone's camera OptiBP™ app uses image data generated from volumetric blood flow changes via light passing through the fingertip, reflecting off blood flowing through the vessels, and then passing to the phone camera's image sensor

Invasive Arterial Lines

The Dräger Infinity Delta XL (Wemmel, Belgium) was used to monitor patients during their ICU stay. The invasive arterial BP signal (reference BP value) was obtained using a radial artery catheter.

Study Protocol

Patients were managed according to standard practice throughout the study period. Before starting the study, the pressure transducer was zeroed or leveled and the dynamic response of the system was checked. When the patient was calm and not agitated, three BP values were simultaneously recorded every hour over a five-hour period using the two methods. This process was repeated the following day (giving 10 time points in total). The duration of each measurement was 30 s with one-minute break in between. The first three measurements were used as calibration with the following nine measurements used for analysis. At least one OptiBP™ value needed to be usable (with correct values) at each time point in order for a patient to be included in the final analysis. The smartphone technology was used on the opposite arm to that of the radial artery catheter.

Statistical Analysis

No sample size was calculated for this study. However, the European Society of Hypertension[21] recommends a minimum of 20 patients for a study such as ours. Incorporating potential dropout, we chose to recruit 30 patients here.

Patient characteristics are presented as mean ± standard deviation (SD) or absolute number and percentage (%). SAP, diastolic arterial pressure (DAP), and mean arterial pressure (MAP) values obtained with the OptiBP™ were compared with invasive arterial measurements with Bland–Altman analysis by calculating the bias (BP of the test method minus BP of the reference method) together with SD, and 95% limits of agreement (mean of the difference ± 1.96 × SD) accounting for repeated measurements. We assessed the performance of the OptiBP™ with the ISO standards, which require the bias between the test and the reference method to be less ≤ 5.0 mmHg ± 8.0 mmHg.[21]

Error grid analysis recently proposed by Saugel et al.[22] was done on data. This analysis consists of a scatterplot with reference BP measurements on the x-axis and measurements from the test method on the y-axis overlaid on a grid that is divided into five risk zones (zones A to E). Each BP measurement pair was categorized into one of the five risk zones, which describes the potential clinical risk caused by a difference in the BP measured using the test method and that measured using the reference method. These five zones are color-coded from green (zone A, no risk) to red (zone E, life-threatening risk).

All statistics were performed using Excel and MedCalc® Statistical Software version 19.6.4 (MedCalc Software Ltd, Ostend, Belgium), and the error grid analysis was done using Matlab (The MathWorks Inc, Natick, MA, USA).