Cardiovascular Disease Risk Factors in US Adults With Vision Impairment

Isabel Mendez, MS; Minchul Kim, PhD; Elizabeth A. Lundeen, PhD; Fleetwood Loustalot, PhD, FNP; Jing Fang, MD, MS; Jinan Saaddine, MD, MPH


Prev Chronic Dis. 2022;19(7):e43 

In This Article


Our analysis of this nationally representative sample of US adults showed that respondents with VI had a higher prevalence of CVD than those without VI. Approximately 1 in 4 adults with VI reported a CVD diagnosis; approximately 1 in 10 of respondents without VI reported a CVD diagnosis. This finding was consistent with that of a previous study.[7] We also found that after adjusting for sociodemographic factors, adults with VI had a higher prevalence of all 7 CVD risk factors that were examined. Furthermore, the relationship between VI and the outcomes of CVD and several CVD risk factors was stronger in the younger age groups. Additionally, more than half of adults with VI reported having 2 or more CVD risk factors (vs 40% among those without VI). Our study adds to existing literature on the relationship between VI and CVD risk factors and strengthens the evidence by examining this relationship among a nationally representative sample of adults aged 18 years or older. Additionally, our study measured general VI, whereas most studies examined CVD risk factors and selected age-related eye diseases,[13,14] thereby excluding those who may have VI from other forms of eye conditions.

Prior studies examining VI and CVD risk factors have investigated associations between specific types of eye disease and individual CVD risk factors such as AMD and smoking or glaucoma and hypertension.[13–17] For example, one population-based, cross-sectional study examining the association of CVD risk factors and AMD found a strong association between current daily smoking and AMD — a leading cause of vision loss for people aged 50 years or older.[18] This finding is consistent with our finding that, compared with adults without VI, those with VI had a 40% higher likelihood of being a current smoker. The same study also found sex differences in the association between late AMD (the most severe form of this eye disease) and CVD risk factors. Although the association between AMD and smoking was significant among both men and women, only women had a significant association between late AMD and current smoking, and the same was true for the relationship between late AMD and other CVD risk factors such as obesity, hypertension, and physical inactivity.[18] A proposed explanation for this finding is that women generally have a longer life expectancy than men and are therefore more likely to have a longer duration of smoking and greater likelihood of progressing to late-stage AMD, a condition which significantly affects the central vision needed for activities of daily living.[19]

Our findings also demonstrate that adults with VI had a 29% higher likelihood of reporting excessive alcohol intake when compared with people without VI. Because our study used cross-sectional data, we were unable to establish temporality or causality for this relationship. However, a longitudinal study examining the relationship of smoking, alcohol consumption, and physical activity to changes in vision over a 20-year period found that people with heavy alcohol consumption had 2.66 times greater odds of incident VI compared with those with occasional alcohol consumption.[20] Other studies have reported contradictory results on the associations of alcohol consumption and eye disease, and additional research could elucidate the effects of alcohol on the risk of VI.[21] The relationship between CVD and alcohol consumption is complex; however, heavier consumption has generally been associated with negative CVD outcomes. A study investigating health problems associated with alcohol consumption found that CVD was among the most common diseases linked to alcohol consumption, particularly heavy drinking.[22] It found that although the overall effect of alcohol consumption on CVD was detrimental, the dose–response relationship differed for different conditions. For example, hypertension risk had a linear relationship with alcohol consumption, indicating an almost entirely detrimental effect. However, for heart disease the association with alcohol consumption showed a J-shaped curve, indicating some protective effects with regular light drinking. This finding is consistent with other studies that have found health benefits to moderate alcohol consumption and an increased risk of illness and death with excessive alcohol consumption.[23–25]

One expected finding of our study was that the largest effect size was for the CVD risk factor of diabetes; when compared with adults without VI, those with VI had a 54% higher likelihood of having diabetes. However, the cross-sectional data we used allow only for an assessment of correlation, not causation. Diabetes may have preceded VI, as 1 in 3 people with diabetes will develop diabetic retinopathy, a potentially vision-threatening condition.[26] Other studies have shown significant associations between diabetes, poor glycemic control, and other vision-damaging conditions such as glaucoma and cataracts.[27] Our study demonstrates a relationship between vision health, diabetes, and CVD health, which is consistent with a recent study that used data from the National Health and Nutrition Examination Survey to examine the association between ideal cardiovascular health and ocular diseases among US adults.[5] The study found that 84% of participants with diabetic retinopathy were observed to have inadequate cardiovascular health and that a 1-unit increase in the LS7 ideal cardiovascular health score reduced the odds of diabetic retinopathy by 31%.[5] Because of the connection between cardiovascular health and diabetic retinopathy risk, it is important for health care professionals to coordinate CVD management and diabetes care to prevent worsening of chronic disease and increased risk of VI.

Our results showed that 3 in 5 people with VI had multiple CVD risk factors. The 2 most prevalent risk factors among those with VI were hypertension and obesity, with more than 2 in 5 reporting hypertension and nearly 1 in 2 reporting obesity. One US study using nationally representative data found that the odds of having obesity were 1.5 times higher among people with blindness or low vision than the general population.[28] Physical activity has been well established as a preventive measure for various chronic diseases including CVD.[29] However, engaging in traditional physical activities may be difficult for people with VI. In fact, our study found that adults with VI were more likely to be physically inactive compared with those without VI, although it is unknown whether their activity level preceded VI. Providing physical activity opportunities and health promotion activities for adults with VI is vital to improve health outcomes among this population because evidence has shown that people with VI often have higher rates of poorer health, including overweight and obesity.[28] Although this need has been recognized, most health promotion interventions have focused on low-intensity and balance activities for older adults.[29] Data on evidence-based health promotion interventions tailored for younger, working-aged adults with VI are limited.[29] In addition to tailored lifestyle interventions, clinical intervention could play a key role in preventing disease progression among people with VI. For example, an ophthalmology report reviewing smoking and VI found that advice on smoking cessation from eye care providers increased the odds of quitting smoking by 30%.[30]


Our findings are subject to several limitations. First, NHIS consists of self-reported data and can be subject to recall and reporting bias. Second, due to the cross-sectional design of NHIS, causality cannot be established. Third, because NHIS-measured dietary data were not collected in 2018, as they are only collected every 5 years through a sponsored module, we could not use the exact LS7 factors that influence cardiovascular health. We instead used other self-reported CVD risk factor data, such as alcohol consumption, obesity, and diabetes, as proxies for LS7's diet, body weight, and blood glucose cardiovascular health metrics, respectively. Lastly, although NHIS is nationally representative, it is only administered to noninstitutionalized adults, thus excluding those living in long-term care facilities or institutional settings where the prevalence of VI and chronic health conditions tends to be higher than that in the general population.


Our results show that adults with VI had a higher prevalence of CVD and CVD risk factors compared with those without VI. The relationship between VI and several CVD risk factors was stronger in the younger age group, demonstrating the potential benefits of early effective clinical and lifestyle interventions, adapted to accommodate VI-related disability to aid in reducing CVD risk in adults with VI. Furthermore, because this association could be bidirectional, integrating vision health into routine clinical care and chronic disease prevention into routine vision services could be beneficial in the prevention and management of CVD and VI.