The Clinical Features of Pulmonary Artery Involvement in Takayasu Arteritis and Its Relationship With Ischemic Heart Diseases and Infection

Hiroki Mukoyama; Mirei Shirakashi; Nozomi Tanaka; Takeshi Iwasaki; Toshiki Nakajima; Hideo Onizawa; Hideaki Tsuji; Koji Kitagori; Shuji Akizuki; Ran Nakashima; Kosaku Murakami; Masao Tanaka; Akio Morinobu; Hajime Yoshifuji

Disclosures

Arthritis Res Ther. 2021;23(293) 

In This Article

Abstract and Introduction

Abstract

Background: Pulmonary artery involvement (PAI) in Takayasu arteritis (TAK) can lead to severe complications, but the relationship between the two has not been fully clarified.

Methods: We retrospectively investigated 166 consecutive patients with TAK who attended Kyoto University Hospital from 1997 to 2018. The demographic data, clinical symptoms and signs, comorbidities, treatments, and imaging findings were compared between patients with and without PAI. TAK was diagnosed based on the American College of Rheumatology Classification Criteria (1990) or the Japanese Clinical Diagnostic Criteria (2008). PAI was identified using enhanced computed tomography, magnetic resonance imaging, or lung scintigraphy.

Results: PAI was detected in 14.6% (n = 24) of total TAK patients. Dyspnea (25.0% vs. 8.6%; p = 0.043), pulmonary arterial hypertension (PAH) (16.7% vs. 0.0%; p < 0.001), ischemic heart disease (IHD) (29% vs. 9.3%; p = 0.018), respiratory infection (25.0% vs. 6.0%; p = 0.009), and nontuberculous mycobacteria (NTM) infection (20.8% vs. 0.8%; p < 0.001) were significantly more frequent, and renal artery stenosis (0% vs. 17%; p = 0.007) was significantly less frequent in TAK patients with PAI than in those without PAI. PAI and biologics were risk factors for NTM.

Conclusions: TAK patients with PAI more frequently have dyspnea, PAH, IHD, and respiratory infection, including NTM, than TAK patients without PAI.

Introduction

Takayasu arteritis (TAK) is an idiopathic vasculitis predominantly affecting the aorta and its branches. However, TAK can also affect the carotid, subclavian, renal, iliac, coronary, and pulmonary arteries (PA). Vessel wall inflammation leads to arterial wall thickening, dilation, stenosis, and occlusion. PA involvement (PAI) occurs in 5.7–25.93% of all cases.[1–10] TAK with PAI is occasionally complicated with pulmonary hypertension (PH), resulting in the risk of early mortality.[8,11] The early detection of PAI in TAK patients is important for preventing disease progression. However, as the disease is rare, the previously reported data, including several cohort studies, remains insufficient, and the clinical features of TAK with PAI are not fully clarified. Therefore, we retrospectively investigated the clinical features of TAK with PAI.

Patients and Methods

The medical records of 186 consecutive patients with TAK who visited Kyoto University Hospital, Kyoto, Japan, from 1997 to 2018 were reviewed. Twenty patients were excluded due to insufficient information. The demographic data, clinical symptoms and signs, imaging findings, treatments, and comorbidities were reviewed and compared between TAK patients with and without PAI. This study was approved by the Ethics Committee of Kyoto University Graduate School and Faculty of Medicine (G412). All study procedures were performed following the Declaration of Helsinki principals. TAK was diagnosed based on the 1990 American College of Rheumatology Classification Criteria[12] or the 2008 Japanese Clinical Diagnostic Criteria.[13] PAI was screened using enhanced computed tomography (CT), magnetic resonance imaging (MRI), or lung scintigraphy and was defined as the presence of vascular involvement manifested as stenosis, occlusion, dilation, or aneurysm formation in either PA. Fever was defined as body temperature ≥ 38 °C. Hypertension was defined by systolic hypertension of ≥ 140 mmHg or diastolic hypertension of ≥ 90 mmHg. Blood pressure discrepancy between arms was defined as that of ≥ 10 mmHg. Ischemic heart disease (IHD) was defined as angina pectoris and myocardial infarction that could be confirmed on the medical record. All patients with pulmonary arterial hypertension (PAH) were diagnosed using right heart catheterization (RHC), based on a mean PA pressure of > 20 mmHg with a PA wedge pressure of ≤ 15 mmHg, a pulmonary vascular resistance of > 3.0 Wood Unit, and exclusion of other types of PH.[14] Six systemic artery involvement subtypes were classified considering the classification criteria proposed by Hata et al. (Types I, IIa, IIb, III, IV, and V).[15] Serious infection was defined as viral, bacterial, or fungal infections requiring hospitalization or intravenous antibiotics. Tuberculosis and nontuberculous mycobacteria (NTM) infections were also considered serious infections because they can cause significant disability and sequela. Respiratory infection was defined as a serious infection of respiratory systems, including pneumonia and NTM pulmonary disease. NTM pulmonary disease was diagnosed using criteria proposed by the American Thoracic Society/Infectious Disease Society of America in 2007.[16] All lung lesions including PAI and NTM were confirmed by radiologists.

Continuous variables were presented as means and standard deviations, and Student's t test was used to compare the groups. Qualitative variables were presented as numbers and percentages, and Fisher's exact test was used to compare the groups. Multivariate logistic regressions were used to detect factors independently associated with NTM infection. The data analysis was conducted using JMP ® 14 (SAS Institute Inc., Cary, NC, USA). Kaplan-Meier analysis was conducted using GraphPad Prism version 7.0b for Mac OS X, GraphPad Software, San Diego, CA, USA, www.graphpad.com. P values less than 0.05 were considered statistically significant.

processing....