Effectiveness of Mechanical Chest Compression Devices Over Manual Cardiopulmonary Resuscitation

A Systematic Review With Meta-Analysis and Trial Sequential Analysis

Mack Sheraton, MD, MHA; John Columbus, MD; Salim Surani, MD, MPH; Ravinder Chopra, MD; Rahul Kashyap, MD


Western J Emerg Med. 2021;22(4):810-819. 

In This Article

Abstract and Introduction


Introduction: Our goal was to systematically review contemporary literature comparing the relative effectiveness of two mechanical compression devices (LUCAS and AutoPulse) to manual compression for achieving return of spontaneous circulation (ROSC) in patients undergoing cardiopulmonary resuscitation (CPR) after an out-of-hospital cardiac arrest (OHCA).

Methods: We searched medical databases systematically for randomized controlled trials (RCT) and observational studies published between January 1, 2000–October 1, 2020 that compared mechanical chest compression (using any device) with manual chest compression following OHCA. We only included studies in the English language that reported ROSC outcomes in adult patients in non-trauma settings to conduct random-effects metanalysis and trial sequence analysis (TSA). Multivariate meta-regression was performed using preselected covariates to account for heterogeneity. We assessed for risk of biases in randomization, allocation sequence concealment, blinding, incomplete outcome data, and selective outcome reporting.

Results: A total of 15 studies (n = 18474), including six RCTs, two cluster RCTs, five retrospective case-control, and two phased prospective cohort studies, were pooled for analysis. The pooled estimates' summary effect did not indicate a significant difference (Mantel-Haenszel odds ratio = 1.16, 95% confidence interval, 0.97 to 1.39, P = 0.11, I2 = 0.83) between mechanical and manual compressions during CPR for ROSC. The TSA showed firm evidence supporting the lack of improvement in ROSC using mechanical compression devices. The Z-curves successfully crossed the TSA futility boundary for ROSC, indicating sufficient evidence to draw firm conclusions regarding these outcomes. Multivariate meta-regression demonstrated that 100% of the between-study variation could be explained by differences in average age, the proportion of females, cardiac arrests with shockable rhythms, witnessed cardiac arrest, bystander CPR, and the average time for emergency medical services (EMS) arrival in the study samples, with the latter three attaining statistical significance.

Conclusion: Mechanical compression devices for resuscitation in cardiac arrests are not associated with improved rates of ROSC. Their use may be more beneficial in non-ideal situations such as lack of bystander CPR, unwitnessed arrest, and delayed EMS response times. Studies done to date have enough power to render further studies on this comparison futile.


Sudden out-of-hospital cardiac arrests (OHCA) are significant causes of morbidity and mortality both in the US and worldwide. About 326,200 OHCAs are resuscitated annually by emergency medical services (EMS) with a survival rate of approximately 12% in the US.[1] Early and high-quality cardiopulmonary resuscitation (CPR) has been identified as a critical factor for survival during resuscitation.[2] To achieve high quality, the American Heart Association recommends a chest compression rate of 100–120 per minute and a compression depth of at least 5 centimeters during CPR.[1] However, various challenges in the field settings threaten to make the CPR delivered by EMS personnel suboptimal. These include a lack of enough human resources, fatigue, competing tasks on arrival, and the challenge of continuing CPR in a moving ambulance.

In the early 2000s, two mechanical compression devices (AutoPulse [Zoll Medical Corporation, Chelmsford, MA] and LUCAS [Physio-Control/Jolife AB, Lund, Sweden]) were approved by the US Food and Drug Administration (FDA) to help surmount these challenges. The AutoPulse device is a load-distributing band device in which a wide band fits circumferentially around the chest wall. This band is automated to shorten and lengthen alternately to provide compressions. The LUCAS device belongs to a different category of piston devices: A piston mounted on a circumferential frame uses a power source to move up and down forcefully, simulating manual compressions.

Theoretically, these mechanical devices should help eliminate the problems associated with fatigue, manpower, and CPR consistency, whether in the field or during transport. They also help free up the ambulance crew for other tasks related to resuscitation. Studies done on porcine models have shown improved coronary perfusion and end-tidal CO2 achieved with mechanical compressions during transport.[3] However, results from clinical trials have been conflicting. Some studies have shown a benefit, while others demonstrated no difference in outcomes using mechanical compressions. Our goal in this systematic review was to synthesize studies comparing outcomes from mechanical and manual CPR during OHCA regardless of presenting rhythm.