Gastrointestinal Disturbance and Effect of Fecal Microbiota Transplantation in Discharged COVID-19 Patients

Fengqiong Liu; Shanliang Ye; Xin Zhu; Xuesong He; Shengzhou Wang; Yinbao Li; Jiang Lin; Jingsu Wang; Yonggan Lin; Xin Ren; Yong Li; Zhaoqun Deng


J Med Case Reports. 2021;15(60) 

In This Article

Abstract and Introduction


Background: To investigate the potential beneficial effect of fecal microbiota transplantation (FMT) on gastrointestinal symptoms, gut dysbiosis and immune status in discharged COVID-19 patients.

Case Presentation: A total of 11 COVID-19 patients were recruited in April, 2020, about one month on average after they were discharged from the hospital. All subjects received FMT for 4 consecutive days by oral capsule administrations with 10 capsules for each day. In total, 5 out of 11 patients reported to be suffered from gastrointestinal symptoms, which were improved after FMT. After FMT, alterations of B cells were observed, which was characterized as decreased naive B cell (P = 0.012) and increased memory B cells (P = 0.001) and non-switched B cells (P = 0.012). The microbial community richness indicated by operational taxonomic units number, observed species and Chao1 estimator was marginally increased after FMT. Gut microbiome composition of discharged COVID-19 patients differed from that of the general population at both phylum and genera level, which was characterized with a lower proportion of Firmicutes (41.0%) and Actinobacteria (4.0%), higher proportion of Bacteroidetes (42.9%) and Proteobacteria (9.2%). FMT can partially restore the gut dysbiosis by increasing the relative abundance of Actinobacteria (15.0%) and reducing Proteobacteria (2.8%) at the phylum level. At the genera level, Bifidobacterium and Faecalibacterium had significantly increased after FMT.

Conclusions: After FMT, altered peripheral lymphocyte subset, restored gut microbiota and alleviated gastrointestinal disorders were observe, suggesting that FMT may serve as a potential therapeutic and rehabilitative intervention for the COVID-19.


Fever and cough are the most common clinical manifestations of COVID-19 infection. In addition, the disease can also cause digestive symptoms such as nausea and diarrhea,[1,2] which may be largely underestimated.[3] Apart from these, lymphopenia and hypercytokinemia were also common in COVID-19 patients which suggest that COVID-19 could compromise the immune system.[4,5] The presence of both lymphopenia and hyper-cytokinemia in COVID-19 patients might indicate the severity of pathogen infection, as previously reported in severe influenza patients during the pandemic of coronavirus (SARS-CoV) in 2003.[6,7]

Tens of trillions of microbiota are colonized on the mucosal surfaces of the human body such as intestine and respiratory tract. In the past decades, large amount of evidence emerged to support the beneficial effects of commensal bacteria, especially probiotics. In addition to their crucial role in maintaining immune homeostasis of the intestine, studies also reported that commensal bacteria exerts a marked influence on the immune responses at other mucosal surfaces such as the respiratory tract to protect against respiratory influenza virus.[8] Siew C et al. observed persistent alterations in the fecal microbiome of SARS-CoV-2 infected patients during the time of hospitalization, which may suggest that targeting gut microbiota is a new therapeutic option or at least is a choice of adjuvant therapy for COVID-19.[9]

Fecal microbiota transplantation (FMT), an effective way to restore gut microbiota,[10] was reported to enhance immunity and would be a potential therapy for individuals with pathogen infection.[11–14] Bradley et al. reported that antibiotic treatment can reduce intestinal microbiota, thus change the interferon signature driven by commensal in lung epithelia and promote early influenza virus replication in the respiratory tract. The effects can be reversed by FMT.[15] Therefore, it is very likely that FMT can enhance immunity and would be a potential therapy for individuals with virus infection. Given the fact that gastrointestinal symptoms and immunity dysfunction is prevalent in COVID-19 patients, we speculate that FMT can bring beneficial effect on the gut microbiota, gastrointestinal disorders and immunity system after SARS-CoV-2 infection. In this pilot study, we recruited 11 discharged COVID-19 patients in March, 2020 in Jiangxi Province and conducted FMT to investigate the potential benefit effect of FMT on the gut dysbiosis and immune system.