Implementing ERAS: How We Achieved Success Within an Anesthesia Department

Dan B. Ellis; Aalok Agarwala; Elena Cavallo; Pam Linov; Michael K. Hidrue; Marcela G. del Carmen; Rachel Sisodia


BMC Anesthesiol. 2021;21(36) 

In This Article

Material and Methods

To implement ERAS Hysterectomy on March 1, 2018, the entire ERAS pathway was divided into two bundles: surgical and anesthesia. Our team utilized the Consolidated Framework For Implementation Research approach to implement each bundle and ultimately change behaviors.

To implement the surgical bundle, published data and best practice position statements were first presented in individualized educational sessions to surgeons, surgical physician assistants, and nurse practitioners. Similar individualized educational sessions were provided to surgical residents when they rotated through gynecology services. Surgical leaders publicly supported the endeavor, and a large-format grand rounds for the gynecology department was held before the pathway launched.

Designing and implementing the anesthesia bundle was more complex. For the ERAS program to be successful, all bundles would need to be consensus-driven, derived from evidence-based practices, and complement other bundles. Therefore, after reviewing the most relevant literature with the anesthesia, surgical, and nursing champions, the anesthesia bundle was created.

To add to the complexity of implementing the anesthesia bundle, outreach efforts to the 164 anesthesiologists and 76 CRNAs as well as the 130 residents who rotate through different operating theaters would be mandatory.

Since duplicating the surgical approach of hosting individualized educational sessions was neither practical nor feasible, the anesthesia bundle was introduced to this group 2 months prior to implementation via email in a communication that described the entire ERAS pathway. The message was inclusive of peer-reviewed literature and data from other hospital-specific ERAS pathways demonstrating improved patient outcomes including decreased length of stay.

Next, a large-format grand rounds presentation on ERAS Hysterectomy was given to the anesthesia department. This grand rounds occurred in the month prior to pathway implementation. Evidence supporting the new pathway was presented at this conference.

Then, on the night before a patient was scheduled to provide anesthesia for a hysterectomy, each member of the anesthesia care team (attending anesthesiologist and certified nurse anesthetist or anesthesia resident) received an email containing the slide deck that had been presented at the grand rounds and a copy of the pathway with the anesthesia bundle attached. For the next 14 months, nightly emails were sent.

Nightly emails ceased 14 months after the pathway was implemented when administrative changes within the department occurred. While the pathway was intended to be posted on a new departmental intranet, it ultimately never was. If a provider requested a copy of the pathway from anesthesia leadership, then it was emailed to that provider. However, it is important to note that after a period of intense intervention, the pathway was not easily accessible to anesthesia providers.

To further enhance compliance with the pathway, annual performance reports were emailed to anesthesia providers showing individual compliance with different elements of the pathway. The first and only report that occurred during this period was emailed to providers 15 months after the pathway was implemented. Technical constraints limited our ability to email reports more frequently. Fortunately, these constraints have been addressed and are now resolved.

To assess the impact of our approach to implement and sustain ERAS Hysterectomy, ethical approval was obtained through the Institutional Review Board (IRB) at the Massachusetts General Hospital (IRB: 2017P000443). Requirement for written informed consent was waived by the IRB. Next, 2570 consecutive charts between October of 2016 and March of 2020 were retrospectively reviewed as part of this cohort study. The objective of this study was to evaluate compliance of pre-determined ERAS metrics during intervention and post intervention periods. The outcome measures are seen in Figure 1.

Figure 1.

Anesthesia Compliance Measures that were included in the anesthesia bundle of our ERAS Program

We recognize that patient comorbidities may impact patient care, and we controlled for the following demographic data: patient age, heart rate, systolic blood pressure, BMI category, and American Society of Anesthesiology (ASA) category. We also recognize that clinical factors such as hysterectomy type and subspecialty surgical division may impact our analysis. Therefore, we controlled for these factors. Finally, we controlled for compliance with four ERAS measures (when evaluating each ERAS compliance, we controlled for compliance with the other four ERAS measures) when performing our analysis. Of note, heart rate and systolic blood pressure serve as very rudimentary proxies for intra-operative pain and fluid status.

We used standard descriptive statistics to characterize the sample. Multivariable regression analyses were used to evaluate changes in ERAS measures during the intervention and post-intervention periods. For binary outcomes logistic regression was used and for continuous outcomes generalized linear models were used. A significance level of 0.05 was used to establish statistical significance and regression results are reported as odds ratio or rate ratio depending on the nature of outcome measure. All statistical analyses were performed using SAS version 9.4.[18]