Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States

Sarah A. Collier; Li Deng; Elizabeth A. Adam; Katharine M. Benedict; Elizabeth M. Beshearse; Anna J. Blackstock; Beau B. Bruce; Gordana Derado; Chris Edens; Kathleen E. Fullerton; Julia W. Gargano; Aimee L. Geissler; Aron J. Hall; Arie H. Havelaar; Vincent R. Hill; Robert M. Hoekstra; Sujan C. Reddy; Elaine Scallan; Erin K. Stokes; Jonathan S. Yoder; Michael J. Beach


Emerging Infectious Diseases. 2021;27(1):140-149. 

In This Article


Domestic waterborne transmission of 17 diseases in the United States caused ≈7.15 million (95% CrI 3.88–12.0 million) waterborne illnesses to occur annually during the study period, including 601,000 ED visits (95% CrI 364,000–866,000), 118,000 hospitalizations (95% CrI 86,800–150,000), and 6,630 deaths (95% CrI 4,520–8,870), and incurred $3.33 billion (95% CrI $1.31–$8.71 billion) in hospitalization and ED visit costs. This estimate includes drinking, recreational, and environmental water exposures. Although the risk of illness from enteric pathogens readily controlled by water treatment processes still exists, this analysis highlights the expanding role of environmental pathogens (e.g., mycobacteria, Pseudomonas, Legionella) that can grow in drinking water distribution systems; plumbing in hospitals, homes, and other buildings; recreational water venues; and industrial water systems (e.g., cooling towers). This snapshot of waterborne disease transmission in the United States circa 2014 contrasts with historical waterborne disease transmission before the implementation of drinking water treatment and sanitation systems (e.g., cholera, typhoid fever, and other enteric pathogens).[1]

Few comparable waterborne disease burden estimates exist for the United States or other high-income countries. The World Health Organization (WHO) has estimated water, sanitation, and hygiene-related disease and injury (i.e., diarrhea, drowning, malnutrition).[32] WHO's estimated 6,600 annual US deaths from nondiarrheal infectious diseases is within the range of our estimate, although the infectious diseases included were not specified, making direct comparison difficult. Work from Australia used the WHO estimates to calculate the waterborne burden of 5 enteric pathogens, whereas estimates from Canada assessed the burden of AGI from drinking water and the burden of 5 enteric pathogens from private wells and small water systems.[33–35] Work in Europe estimated the proportion of 9 primarily enteric diseases attributable to water.[36] Prior estimates of the burden of waterborne disease in the United States focused on the burden of gastrointestinal illness associated with drinking water and an estimated 4–32 million cases of illness each year.[16–18] Our estimate differs from previous work because it focuses on specific pathogens, includes nongastrointestinal diseases, and considers all waterborne exposure routes.

A previous estimate of foodborne disease found fewer illness, hospitalizations, and deaths from foodborne disease due to known pathogens,[14] although it found more illness when unspecified agents were considered.[15] For pathogens included in both estimates, underdiagnosis multipliers did not differ substantially, except for decreases in STEC multipliers because of improved laboratory capacity. The higher totals in this analysis reflect the diseases selected for inclusion, some of which cause severe respiratory diseases more likely to result in hospitalization and death than the diseases with primarily enteric effects that were included in the foodborne estimate. When estimates for the enteric pathogens included in both analyses are compared, the waterborne burden is lower than the foodborne burden. This difference could be because drinking and treated recreational water systems were designed to prevent enteric illness, and the intervention (disinfection) is relatively simple compared with the manifold interventions needed to prevent foodborne illness.

This work is subject to several limitations. First, we used a series of multipliers to generate estimates of disease, and accuracy of these estimates relies on the accuracy of the multipliers. Although we attempted to account for the uncertainty of each data point using uncertainty intervals, any systematic errors in multipliers will produce a biased estimate. For example, waterborne transmission is not the sole route of transmission for any of the diseases in this work; many of the included diseases can be transmitted through multiple pathways (e.g., cryptosporidiosis can be waterborne, foodborne, or transmitted directly from animals or humans). We also relied on structured expert judgment (SEJ) to estimate the proportions of diseases attributed to waterborne transmission. SEJ is an approach used when primary data are not available, and is subject to limitations including expert bias.[26,27] For norovirus infection, the uncertainty interval for the waterborne attribution percentage was large, reflecting a lack of consensus among experts, and resulting in an estimate of illness with a wide credibility interval (1,330,000 [95% CrI 5,310–5,510,000] illnesses). Second, this analysis is limited to 17 infectious diseases with adequate surveillance or administrative data available and does not include all disease associated with waterborne transmission in the United States. Insufficient data were available to quantify the contribution of many viral diseases, including sapovirus, rotavirus, and astrovirus; or free-living ameba infections, which cause deaths in the United States each year.[5] Noninfectious diseases (e.g., from exposure to harmful algal blooms, heavy metals, disinfection byproducts) were not considered. Third, these estimates used administrative data and relied on coding from the International Classification of Diseases, 9th Revision, Clinical Modification, which might not accurately capture the actual disease of the ill person. Fourth, the cost estimates consider only out-of-pocket and insurer payments and do not account for the total amount of time or wages lost to ill health, disability, early death, or other indirect costs. Physicians' office visits were not included, because data were not available. Payment totals might not reflect the actual cost incurred by healthcare providers. Fifth, this work did not make separate estimates for different age, demographic, or risk groups. Risks could differ by group (e.g., children swim more often and have higher rates of cryptosporidiosis), resulting in over- or underestimation of waterborne disease.[37,38] Cost estimates did not consider the contribution of immunosuppressing conditions or other concurrent conditions to the healthcare costs incurred. Finally, some estimates used data from FoodNet. In 2007, Hispanic persons were underrepresented in FoodNet sites.[39] Appendix 1 contains additional pathogen-specific limitations. Analytic strengths of these burden estimates include the use of active surveillance data when possible, estimates from a comprehensive structured expert judgment, and credible intervals to acknowledge the inherent uncertainty in the model inputs and outputs.

The data presented here reflect the changing picture of waterborne disease in the United States and underscore the role of environmental pathogens that grow in biofilms. An estimated 7.15 million (95% CrI 3.88 million–12.0 million) domestically acquired waterborne illnesses occur in the United States each year, highlighting the need to focus public health resources on the prevention and control of these diseases, including surveillance for the diseases in this estimate that do not have a dedicated national case surveillance system (e.g., NTM infections). These findings should serve as a foundation for improved disease surveillance, inform waterborne disease prevention priorities, and help measure progress in the prevention of waterborne disease in the United States.