Respiratory Physiology of COVID-19-Induced Respiratory Failure Compared to ARDS of Other Etiologies

Domenico Luca Grieco; Filippo Bongiovanni; Lu Chen; Luca S. Menga; Salvatore Lucio Cutuli; Gabriele Pintaudi; Simone Carelli; Teresa Michi; Flava Torrini; Gianmarco Lombardi; Gian Marco Anzellotti; Gennaro De Pascale; Andrea Urbani; Maria Grazia Bocci; Eloisa S. Tanzarella; Giuseppe Bello; Antonio M. Dell'Anna; Salvatore M. Maggiore; Laurent Brochard; Massimo Antonelli


Crit Care. 2020;24(529) 

In This Article

Abstract and Introduction


Background: Whether respiratory physiology of COVID-19-induced respiratory failure is different from acute respiratory distress syndrome (ARDS) of other etiologies is unclear. We conducted a single-center study to describe respiratory mechanics and response to positive end-expiratory pressure (PEEP) in COVID-19 ARDS and to compare COVID-19 patients to matched-control subjects with ARDS from other causes.

Methods: Thirty consecutive COVID-19 patients admitted to an intensive care unit in Rome, Italy, and fulfilling moderate-to-severe ARDS criteria were enrolled within 24 h from endotracheal intubation. Gas exchange, respiratory mechanics, and ventilatory ratio were measured at PEEP of 15 and 5 cmH2O. A single-breath derecruitment maneuver was performed to assess recruitability. After 1:1 matching based on PaO2/FiO2, FiO2, PEEP, and tidal volume, COVID-19 patients were compared to subjects affected by ARDS of other etiologies who underwent the same procedures in a previous study.

Results: Thirty COVID-19 patients were successfully matched with 30 ARDS from other etiologies. At low PEEP, median [25th–75th percentiles] PaO2/FiO2 in the two groups was 119 mmHg [101–142] and 116 mmHg [87–154]. Average compliance (41 ml/cmH2O [32–52] vs. 36 ml/cmH2O [27–42], p = 0.045) and ventilatory ratio (2.1 [1.7–2.3] vs. 1.6 [1.4–2.1], p = 0.032) were slightly higher in COVID-19 patients. Inter-individual variability (ratio of standard deviation to mean) of compliance was 36% in COVID-19 patients and 31% in other ARDS. In COVID-19 patients, PaO2/FiO2 was linearly correlated with respiratory system compliance (r = 0.52 p = 0.003). High PEEP improved PaO2/FiO2 in both cohorts, but more remarkably in COVID-19 patients (p = 0.005). Recruitability was not different between cohorts (p = 0.39) and was highly inter-individually variable (72% in COVID-19 patients and 64% in ARDS from other causes). In COVID-19 patients, recruitability was independent from oxygenation and respiratory mechanics changes due to PEEP.

Conclusions: Early after establishment of mechanical ventilation, COVID-19 patients follow ARDS physiology, with compliance reduction related to the degree of hypoxemia, and inter-individually variable respiratory mechanics and recruitability. Physiological differences between ARDS from COVID-19 and other causes appear small.