COVID-19 in Breast Cancer Patients

A Cohort at the Institut Curie Hospitals in the Paris Area

Perrine Vuagnat; Maxime Frelaut; Toulsie Ramtohul; Clémence Basse; Sarah Diakite; Aurélien Noret; Audrey Bellesoeur; Vincent Servois; Delphine Hequet; Enora Laas; Youlia Kirova; Luc Cabel; Jean-Yves Pierga; Institut Curie Breast Cancer and COVID Group; Laurence Bozec; Xavier Paoletti; Paul Cottu; François-Clément Bidard

Disclosures

Breast Cancer Res. 2020;22(55) 

In This Article

Results

COVID-19 Diagnosis

From March 13, 2020, to April 25, 2020 (date of data extraction), 76 patients actively treated for breast cancer were included in the ICH COVID-19 registry. For comparison, 15,600 breast cancer patients had at least one consultation or treatment for breast cancer at one of the IC hospitals in the 4 months before lockdown (November 1, 2019, to February 28, 2020). The patient flowchart for the COVID-19 registry is displayed in Figure 1a. RNA testing was performed in 58 patients, while CT scan was performed in 39 patients. A total of 59 patients were diagnosed with COVID-19, based on either a positive SARS-CoV-2 RNA test (N = 41 patients; "RNA-positive subgroup") or, in the case of negative or missing RNA test, radiologic findings (N = 18 patients). Seventeen patients only reported symptoms suggestive of COVID-19 that were not confirmed by RNA test and/or lung CT scan. Most patients in the subgroup who underwent both RNA testing and CT scan presented concordant results, as displayed in Figure 1b.

Figure 1.

Patient flow and COVID-19 testing. a Patient flow. b Relationship between clinical, laboratory, and radiologic features. Venn diagram focusing on the 30 patients with symptoms and available CT scan and RNA test results. Independence of RNA test and CT scan was rejected (Fisher's exact test, p < 0.001)

Patient History

Breast cancer patient history and comorbidities are shown in Table 1. Ten of the 59 COVID-19 patients (17%) were older than 70. Other notable comorbidities among COVID-19 patients included hypertension (36%), obesity (17%), diabetes (17%), and heart disease (14%). The most frequent comedication in this population was corticosteroids (22%, defined as a daily intake of more than 20 mg equivalent dose of prednisolone, excluding chemotherapy comedications). Reasons for corticosteroid intake were symptomatic brain or leptomeningeal metastasis (10%), epiduritis (5%), other cancer-related symptoms (5%), and autoimmune hepatitis (2%), respectively. All these patients have been under corticosteroids for at least 1 month. About two thirds of COVID-19 patients (and all those treated with corticosteroids) were treated for metastatic breast cancer. As shown in Table 2, ongoing anti-cancer treatments were representative of those currently administered to patients treated for early or metastatic disease, most commonly chemotherapy (49%), followed by endocrine therapy (32%).

Features at Diagnosis

Clinical, laboratory, and radiologic features at diagnosis are displayed in Table 3. Fever and cough were the most common symptoms, observed in 46% and 37% of COVID-19 patients, respectively. Nine of the 59 patients (18%) developed COVID-19 symptoms more than 2 days after being admitted to hospital (IC or elsewhere), corresponding to the interval used to define nosocomial infections. The mean absolute lymphocyte count was normal (1.5/mm3). Most patients had no or limited extent of COVID-19 lung disease, as 25/28 patients (89%) had less than 25% involvement of their lung volume. Twenty-eight CT scans were available for central review: the most common radiologic feature was ground-glass opacities, observed in 14/28 (50%) of COVID-19 patients with CT scan at diagnosis. No significant association was observed between these characteristics or the presence of lung metastases and the extent of COVID-19 lung disease. Supplementary Figure 1 displays, for each COVID-19 patient, the prior radiation therapy fields, radiation therapy sequelae, and extent of COVID-19 lung disease. There was no association between prior radiation therapy and the extent of COVID-19 lesions (≤ 10% vs > 10%, Fisher's exact test p = 0.69).

Outcome and Prognostic Factors

All patient outcomes were updated 2 days prior to this analysis. Of the 59 breast cancer patients diagnosed with COVID-19, 28 (47%) were hospitalized, while 31 (53%) returned home. Twenty-three (82%) of the 28 hospitalized patients received antibiotics, and 3 (11%) received corticosteroids. No patients received hydroxychloroquine, antiviral, or immunomodulating drugs as frontline treatment at admission. The use of these putative treatments, which were available whenever necessary throughout the patient's stay in hospital, was not always available for patients hospitalized outside ICH.

None of the 17 symptom-only patients had to be hospitalized. The flow of COVID-19 patients during the course disease is shown in Figure 2. Four patients were transferred to ICU at diagnosis or during hospitalization. As of April 24, 45 (76%) of the 59 COVID-19 patients were considered to be either recovering or cured. The outcome of 10 (17%) patients remains undetermined (most recent cases with limited follow-up), while 4 (6.7%) patients died: 2 patients were receiving later lines of treatment for metastatic breast cancer (these patients were not transferred to ICU), 1 patient had recently started first-line endocrine therapy combined with palbociclib, and 1 patient was receiving neoadjuvant chemotherapy. Noteworthy, this last patient was treated with an anti-CD80/86 antibody (regulating CTLA-4 signaling). Further details on the history of the four deceased patients are available in Table 4.

Figure 2.

COVID-19 patients' trajectory. Follow-up consisted in clinical evaluation by phone calls scheduled at days 8, 14, and 28

An exploratory analysis of factors associated with either ICU admission or death in the COVID-19 population showed that among all factors listed in Table 1, Table 2, and Table 3, only age > 70 years and hypertension were significantly associated with COVID-19 severity (both p < 0.05). More specifically, the ongoing systemic treatment type (Supplementary Table 1), lymphopenia (< 0.5 G/L), neutropenia (< 1 G/L), and use of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers had no significant prognostic impact (all p value > 0.6). Age and hypertension remained as prognostic factors in the subgroup of RNA test-positive patients except that hypertension was of borderline significance. Same statistical conclusions were obtained with the analyses of time to death or ICU admission.

Comments

3090D553-9492-4563-8681-AD288FA52ACE

processing....