Post-Traumatic Osteoarthritis Following ACL Injury

Li-Juan Wang; Ni Zeng; Zhi-Peng Yan; Jie-Ting Li; Guo-Xin Ni

Disclosures

Arthritis Res Ther. 2020;22(57) 

In This Article

Abstract and Introduction

Abstract

Post-traumatic osteoarthritis (PTOA) develops after joint injury. Specifically, patients with anterior cruciate ligament (ACL) injury have a high risk of developing PTOA. In this review, we outline the incidence of ACL injury that progresses to PTOA, analyze the role of ACL reconstruction in preventing PTOA, suggest possible mechanisms thought to be responsible for PTOA, evaluate current diagnostic methods for detecting early OA, and discuss potential interventions to combat PTOA. We also identify important directions for future research. Although much work has been done, the incidence of PTOA among patients with a history of ACL injury remains high due to the complexity of ACL injury progression to PTOA, the lack of sensitive and easily accessible diagnostic methods to detect OA development, and the limitations of current treatments. A number of factors are thought to be involved in the underlying mechanism, including structural factors, biological factors, mechanical factors, and neuromuscular factor. Since there is a clear "start point" for PTOA, early detection and intervention is of great importance. Currently, imaging modalities and specific biomarkers allow early detection of PTOA. However, none of them is both sensitive and easily accessible. After ACL injury, many patients undergo surgical reconstruction of ACL to restore joint stability and prevent excessive loading. However, convincing evidence is still lacking for the superiority of ACL-R to conservative management in term of the incidence of PTOA. As for non-surgical treatment such as anti-cytokine and chemokine interventions, most of them are investigated in animal studies and have not been applied to humans. A complete understanding of mechanisms to stratify the patients into different subgroups on the basis of risk factors is critical. And the improvement of standardized and quantitative assessment techniques is necessary to guide intervention. Moreover, treatments targeted toward different pathogenic pathways may be crucial to the management of PTOA in the future.

Introduction

Osteoarthritis (OA) is the most common type of arthritis and a leading cause of mobility-related disability, affecting nearly half of the population.[1] It is suspected to be a collection of distinct subtypes, each with a different etiology and clinical characteristics. Classifying OA into multiple disease entities may help to understand its heterogeneity and develop potential interventions targeted toward individual disease processes. Post-traumatic osteoarthritis (PTOA), a subtype of OA, develops after joint injury such as an intra-articular fracture, a ligament injury, or other cartilage (articular or meniscus) injuries within a joint. It accounts for nearly 12% of all cases of symptomatic OA.[2] Unlike idiopathic OA, PTOA represents a cause of functional disability in a disproportionately young population because primary injuries are more likely to be sustained by younger individuals.[3,4] Besides, PTOA commonly has a known "starting point," which means that interventions could theoretically be initiated at an early stage to prevent the progression of the disease.[3]

Five major risk factors may contribute to PTOA: anterior cruciate ligament (ACL) injury, meniscus tear, glenohumeral instability, patellar dislocation, and ankle instability.[1] Obviously, there are differences between these factors regarding the mechanisms by which the primary joint disorder initiates the subsequent development of OA and the way in which the disease process is maintained. The incidence of ACL injury in particular is high especially in adolescents playing sports that involve pivoting. The reported incidence of PTOA following ACL injury is as high as 87%.[5] This narrative review will outline the incidence of ACL injury that progresses to PTOA, analyze the role of ACL reconstruction in preventing PTOA, suggest possible mechanisms thought to be responsible for PTOA, evaluate current diagnostic methods for detecting early OA, and discuss potential interventions to combat PTOA. Finally, we will identify important directions for future research.

Comments

3090D553-9492-4563-8681-AD288FA52ACE

processing....