Candida auris in a U.S. Patient With Carbapenemase-Producing Organisms and Recent Hospitalization in Kenya

Richard B. Brooks, MD; Maroya Walters, PhD; Kaitlin Forsberg, MPH; Elisabeth Vaeth, MPH; Kate Woodworth, MD; Snigdha Vallabhaneni, MD

Disclosures

Morbidity and Mortality Weekly Report. 2019;68(30):664-666. 

In This Article

Introduction

Candida auris is an emerging drug-resistant yeast that causes outbreaks in health care facilities; cases have been reported from approximately 30 countries. U.S. cases of C. auris are likely the result of importation from abroad followed by extensive local transmission in health care settings.[1] Early detection of Candida auris is key to preventing its spread. C. auris frequently co-occurs with carbapenemase-producing organisms (CPOs), like carbapenem-resistant Enterobacteriaceae (CRE), organisms for which testing and public health response capacity substantially increased beginning in 2017. In September 2018, the Maryland Department of Health (MDH) was notified of a hospitalized resident with CPO infection and colonization and recent hospitalization in Kenya. In light of this history, the patient was screened for C. auris and found to be colonized. Public health responses to CPOs can aid in the early identification of C. auris. As part of CPO investigations, health departments should assess whether the patient has risk factors for C. auris and ensure that patients at risk are tested promptly.

First identified in Japan in 2009, C. auris is an emerging drug-resistant yeast that has now been reported in approximately 30 countries.[2] C. auris has been associated with outbreaks in health care facilities, where its spread is facilitated by challenges with identification, persistent contamination of the health care environment, and limited effectiveness of some standard hospital disinfectants. In the United States, outbreaks have most frequently occurred in high-acuity postacute care facilities, including nursing homes that care for mechanically ventilated patients. Co-infection or co-colonization with C. auris and other emerging multidrug-resistant organisms, including CPOs, has been observed regularly.

In September 2018, the MDH was notified about a patient who had recently been medically evacuated from Kenya to an acute care hospital in Maryland. The patient was a U.S. resident who did not work in health care and who had a cerebral hemorrhage while visiting Kenya. During the subsequent month-long hospitalization in Kenya, the patient underwent several operations and other procedures, including arterial clipping and placement of a tracheostomy and feeding tube. Hospital treatment was complicated by sepsis, pneumonia, and a urinary tract infection, requiring treatment with broad-spectrum antibiotics and at least one course of antifungal medications.

In light of the patient's history of receiving health care abroad, the Maryland hospital placed the patient on contact precautions in a private room immediately upon admission.[3] Specimens collected at admission to evaluate ongoing fevers grew several highly drug-resistant organisms, including oxacillinase-48-like-producing carbapenem-resistant Klebsiella pneumoniae in urine and New Delhi metallo-beta-lactamase-producing carbapenem-resistant Pseudomonas aeruginosa in sputum.

At the time of the investigation, C. auris had been reported from one major hospital in Kenya, although not from the facility where the Maryland patient had been hospitalized.[4] MDH had previously identified C. auris colonization in a patient infected with multiple CPOs and who had had a recent prolonged hospitalization in India. Based on the current patient's prolonged hospitalization in a country with known C. auris cases, the patient's colonization and infection with CPOs, and MDH's previous experience, MDH, in consultation with CDC, recommended that the hospital evaluate the patient for C. auris colonization. On hospital day 12, a single skin swab of the patient's bilateral axilla and groin areas (one swab for all four areas) was obtained for fungal culture; resulting growth was identified as C. auris by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, indicating colonization in the absence of clinical signs and symptoms. Consistent with C. auris detection representing colonization rather than infection, the patient did not receive antifungal therapy while hospitalized in the United States and was ultimately discharged to a rehabilitation facility. Because of the potential for C. auris to be transmitted in health care settings,[5] 21 patients located on the same hospital unit as the index patient were evaluated for C. auris colonization. All screening swabs were negative for C. auris.

Comments

3090D553-9492-4563-8681-AD288FA52ACE

processing....