It's Not You, It's the Design - Common Problems With Patient Monitoring Reported by Anesthesiologists

A Mixed Qualitative and Quantitative Study

David W. Tscholl; Lucas Handschin; Julian Rössler; Mona Weiss; Donat R. Spahn; Christoph B. Nöthiger


BMC Anesthesiol. 2019;19(87) 

In This Article

Abstract and Introduction


Background: Patient monitoring is critical for perioperative patient safety as anesthesiologists routinely make crucial therapeutic decisions from the information displayed on patient monitors. Previous research has shown that today's patient monitoring has room for improvement in areas such as information overload and alarm fatigue. The rationale of this study was to learn more about the problems anesthesiologists face in patient monitoring and to derive improvement suggestions for next-generation patient monitors.

Methods: We conducted a two-center qualitative/quantitative study. Initially, we interviewed 120 anesthesiologists (physicians and nurses) about the topic: common problems with patient monitoring in your daily work. Through deductive and inductive coding, we identified major topics and sub themes from the interviews. In a second step, a field survey, a separate group of 25 anesthesiologists rated their agree- or disagreement with central statements created for all identified major topics.

Results: We identified the following six main topics: 1. "Alarms," 2. "Artifacts," 3. "Software," 4. "Hardware," 5. "Human Factors," 6. "System Factors," and 17 sub themes. The central statements rated for the major topics were: 1. "problems with alarm settings complicate patient monitoring." (56% agreed) 2. "artifacts complicate the assessment of the situation." (64% agreed) 3. "information overload makes it difficult to get an overview quickly." (56% agreed) 4. "problems with cables complicate working with patient monitors." (92% agreed) 5. "factors related to human performance lead to critical information not being perceived." (88% agreed) 6. "Switching between monitors from different manufacturers is difficult." (88% agreed). The ratings of all statements differed significantly from neutral (all p < 0.03).

Conclusion: This study provides an overview of the problems anesthesiologists face in patient monitoring. Some of the issues, to our knowledge, were not previously identified as common problems in patient monitoring, e.g., hardware problems (e.g., cable entanglement and worn connectors), human factor aspects (e.g., fatigue and distractions), and systemic factor aspects (e.g., insufficient standardization between manufacturers). An ideal monitor should transfer the relevant patient monitoring information as efficiently as possible, prevent false positive alarms, and use technologies designed to improve the problems in patient monitoring.


The World Health Organization considers continuous patient monitoring during surgical interventions as "extremely important" for patient safety.[1]

A patient monitor measures and displays the vital signs of a patient using various sensors and enables care providers to take corrective action if a patient's vital signs deviate from their normal range. Patient monitoring devices have gained significant relevance in our area of expertise. Anesthesiologists nearly always work directly with a patient monitor.

To perceive the data displayed on a patient monitor and to derive a mental model of the operating room situation, an exchange of information has to take place between the display of the patient monitor and the person interpreting the data shown there.[2–8] The patient monitor serves as the critical interface between the hardware and software components that measure physical quantities in the patient on the one hand and the sensorium and cognition of the human decision makers on the other hand. However, we know from previous research that current standard patient monitoring still has deficits regarding this information transmission. Today's monitors make use of numbers and curves to transfer vital sign information and display a multitude of individual numerical values and curve forms with very similar ranges of values, e.g., blood pressure, pulse rate and oxygen saturation can all three take a value of 95. Care providers must read all these numbers from the screen one after the other and afterwards cognitively integrate the data to derive meaning, before they can start to establish a complete picture of the patient situation.[9–13] Several research groups have developed innovative technologies, which, at least in theory, were able to communicate a situation overview to users in a faster and easier-to-understand fashion.[14–18]

From previous research, we also learned that auditory and visual alarm displays represent a problem in patient monitoring. Alarms are set on the monitor to alert if a vital sign exits its normal range. They are often false positive, e.g., as a result of measurement artefacts, leading to alarm fatigue and potentially causing true positive alarms to go unnoticed because of induced insensitivity.[19–24]

The rationale for this study was to learn more about the problems anesthesiologists consider common in their daily work with patient monitors. We hoped that these results would allow us to identify critical aspects for further development in future patient monitors.