Postoperative Remote Lung Injury and Its Impact on Surgical Outcome

Lin Chen; Hailin Zhao; Azeem Alam; Emma Mi; Shiori Eguchi; Shanglong Yao; Daqing Ma


BMC Anesthesiol. 2019;19(30) 

In This Article

Remaining Questions and Directions for Future Research

Whilst the scope for improvement in the incidence of postoperative remote lung injury is significant, there are a number of important unanswered questions. Currently, the vast majority of evidence underlying our current understanding of the pathogenesis of remote lung injury is through in vivo studies, with limited human studies.

The off-license use of anaesthetic agents to ameliorate remote lung injury is inherently associated with risks in terms of safety and efficacy. Only a few human studies exist investigating the therapeutic effects of sevoflurane and propofol in ameliorating postoperative lung injury, with no overall significant identified differences in the incidence of ARDS, as well as conflicting biochemical changes reported between the studies.[95–97] However, historical evidence exists to suggest that inhaled agents, such as isoflurane, may possess deleterious effects.[98]

This highlights the importance of high-powered, controlled, clinical trials investigating previously purported in vivo markers of remote lung injury, such as IL-6, HMGB-1 and NF-κB, in human subjects. The aim of this should be to facilitate similarly high-powered, randomised controlled trials investigating the efficacy, safety and side-effect profiles of anaesthetic agents such as isoflurane, sevoflurane and dexmedetomidine within clinical practice, as well as conservative approaches such as non-judicious intravenous fluid administration. Furthermore, additional in vitro and in vivo research is required to investigate the development of novel agents targeting specific pro-inflammatory markers, such as HMGB-1, NLRP3 and Hsp, as these agents may confer additional therapeutic benefit in the future.