Actions in Support of Newborn Screening for Critical Congenital Heart Disease — United States, 2011–2018

Jill Glidewell, MSN, MPH; Scott D. Grosse, PhD; Tiffany Riehle-Colarusso, MD; Nelangi Pinto, MD; Jeff Hudson, MA; Rachel Daskalov, MHA; Amy Gaviglio, MS; Erin Darby, MPH; Sikha Singh, MHS; Marci Sontag, PhD


Morbidity and Mortality Weekly Report. 2019;68(5):107-111. 

In This Article

Abstract and Introduction


In 2011, the U.S. Department of Health and Human Services added critical congenital heart disease (CCHD), which occurs in two of every 1,000 births, to the list of conditions recommended to states for universal newborn screening.[1] Without early detection, infants with CCHD are at risk for substantial morbidity and death in the first weeks and months of life.[2] Based on 2007–2013 data, deaths from CCHD and other cardiac causes in infants aged <6 months significantly declined in infants born in eight states after they had fully implemented mandated newborn CCHD screening policies by June 2013.[3] CDC collaborated with the American Academy of Pediatrics (AAP) and the Association of Public Health Laboratories' Newborn Screening Technical Assistance and Evaluation Program (NewSTEPs) to update a 2015 report[4] on states' actions toward adopting and implementing policies supporting CCHD newborn screening. In 2018, all 50 states and the District of Columbia (DC) had implemented CCHD screening policies, and, with one exception, all states mandated that screening be done (California mandates that screening be offered). However, not all states had data systems in place for tracking all screening results and outcomes. Ongoing evaluation activities, which rely on screening data, could help identify program improvement opportunities and monitor the impact of early identification of CCHD.

Congenital heart defects occur in approximately eight of every 1,000 live births; one fourth of infants born with congenital heart defects have CCHD.[1,2] CCHD typically requires surgical or catheter intervention before age 1 year.[2] Newborn screening can identify newborns with CCHD before signs or symptoms are evident and before hospital discharge after birth. CCHD screening supplements clinical detection of CCHD to facilitate timely identification, treatment, and management of affected infants. Infants are screened for CCHD using pulse oximetry, a noninvasive method to estimate the oxygen saturation in an infant's arterial blood. Hypoxemia (abnormally low oxygen saturation) detected by pulse oximetry screening can result from CCHD or other causes. Additional testing (e.g., chest radiograph or echocardiography) is needed after an abnormal screen to determine the cause of the hypoxemia.[2,5,6]

CDC, AAP, and NewSTEPs assessed actions by states (i.e., legislation, regulations, or both) toward adoption and implementation of policies supporting CCHD newborn screening. In the context of this report, a statute is a law enacted by a state legislature and signed into law, a regulation is considered to be a rule promulgated by a state agency with the force of law, and legislation is a bill reviewed and acted upon by a state legislature. Policies include statutes, regulations, and other measures, such as appropriations. The effective date of a statute can differ from the date it is implemented by health care providers. For example, Maryland enacted a screening mandate in May 2011 that legally took effect in July 2011.[4] However, the effect of the statute was to direct the state health department to begin the process of preparing regulations that, once issued, would require hospitals and other delivery care providers to screen for CCHD. The date on which the Maryland screening mandate was actually implemented at the provider level was September 1, 2012.[3] In this report, the implementation date is the date when providers were expected or required to begin universal screening of newborns for CCHD.

AAP and NewSTEPs used several methods to gather and compile enactment, effective, and implementation dates of screening policies, as well as information on screening data collection and data sharing. AAP monitored state legislation using legal and regulatory tracking software and researched regulatory and hospital guidelines on state websites. AAP obtained primary information through direct contact and partnership with AAP state chapters. State-specific information on collection of screening data elements was provided by state CCHD screening programs directly to the NewSTEPs Data Repository.[7] NewSTEPs surveyed state CCHD newborn screening coordinators to assess data sharing and collaboration between birth defects surveillance programs, which track cases of CCHD, and newborn screening programs. Newborn screening programs in all 51 jurisdictions (50 states and DC) participated in the survey.

From 2013 to 2018, the number of jurisdictions that had implemented CCHD screening policies increased from 22 to 51 (Table 1). States used various approaches to adopt newborn screening for CCHD. Thirty-nine (76%) jurisdictions adopted statutes that either mandated screening or the offer of screening or called for the issuance of regulations to mandate that screening be offered; the other 12 jurisdictions implemented mandates exclusively through regulations. The content of policies varies among states. For example, in 2015, Colorado mandated that infants born in a birthing center located below 7,000 feet elevation be screened for CCHD (infants born at higher-elevation locations typically have lower normal oxygen saturation levels, which have not yet been incorporated in screening guidelines). One year later, the state required midwives attending home births to either screen newborns or refer the parents to a physician or health facility. Kansas, which previously had a successful voluntary CCHD screening project in place since 2013, added CCHD to its required newborn screening panel by regulation in early 2018. In Idaho, regulations went into effect in July 2018 that require all newborns to be screened for CCHD, including those born outside of a birthing center or hospital.

Forty-one (80%) jurisdictions reported receiving CCHD screening data from hospitals or birthing centers (Table 2). Among these jurisdictions, 32 (78%) receive some type of individual-level screening results for all infants screened, including 19 jurisdictions that receive all screening data (oxygen saturation values and dates and times of screening), one that receives only data on the final screen, and 12 that receive only the final interpretation result (pass/fail). Five (12%) of 41 jurisdictions reported receiving only aggregate data on the numbers of infants screened and CCHD cases detected, and four (10%) reported receiving individual-level screening results (oxygen saturation values and dates and times of screening) only for CCHD cases detected through screening.

Nineteen (37%) jurisdictions reported data sharing between birth defects surveillance programs and newborn screening programs, maximizing the surveillance capabilities of these public health programs (Table 2). Shared data are used to identify cases of CCHD missed by screening, to ensure cases match between birth defects and newborn screening programs, or to perform postdiagnostic follow-up of infants identified by CCHD screening; six jurisdictions reported sharing for all three purposes. Among the 19 jurisdictions that reported data sharing, five had electronic linkage between newborn screening and birth defects surveillance data systems, two had a shared data system that encompasses both CCHD newborn screening and birth defects, and the remaining 12 shared data manually through direct communication, email, and reports. Among reasons cited by the 32 jurisdictions that do not share data between birth defects surveillance programs and CCHD newborn screening programs are absence of a birth defects surveillance program (five, 16%); lack of individual-level pulse oximetry screening data (10, 31%); and data systems that are not linked (17, 53%).