Circulating Serotonin Levels in COPD Patients

A Pilot Study

Pietro Pirina; Elisabetta Zinellu; Panagiotis Paliogiannis; Alessandro G. Fois; Viviana Marras; Salvatore Sotgia; Ciriaco Carru; Angelo Zinellu


BMC Pulm Med. 2018;18(167) 

In This Article


Serotonin is a biogenic amine known for its role as a neurotransmitter. It is synthesized from L-tryptophan within the central nervous system (CNS), where it is stored in the presynaptic neurons. Serotonin synthesis outside the CNS is limited to enterochromaffin cells, while platelets take up serotonin from plasma representing a further major storing site for serotonin.[24] The main metabolic pathway of serotonin is the metabolism by monoamine oxidase (MAO) that catalyses the oxidative deamination of the amine substrate, with production of its aldehyde intermediate and hydrogen peroxide as a by-product. The aldehyde intermediate is then rapidly oxidized by aldehyde dehydrogenase to 5-hydroxyindoleacetic acid.[24,25]

It is known that lung represent an important site in which removal and metabolism of serotonin take place.[26] The ability of the endothelial cells of the lungs to metabolise amines may be reduced in disease states, and this could explain their increased levels in the circulation. Elevated circulating levels of serotonin have been reported in respiratory diseases such as asthma[27] and lung cancer.[28] COPD has also been associated with a variation of a transporter gene involved in serotonin re-uptake[29] and metabolites of the serotonin pathway have been associated with adverse outcome in exacerbated COPD.[30] Furthermore, it is now recognized that oxidative stress is involved in the pathogenesis of COPD[9,10] and it has been reported that serotonin induces oxidative stress via MAO-dependent pathway in human heart valves[16] and in mesenchymal stem cells.[17] Moreover, it has been described that cigarette smoke, a major COPD risk factor, inhibit MAO in different species in vitro.[31] Such evidences suggest that serotonin may play relevant roles in the pathogenesis of COPD.

Our study has evidenced a significant increase in serotonin levels in COPD patients compared to controls. Spearman's correlations indicated that blood serotonin values are inversely associated with FEV1 and FVC, to confirm an association of serotonin levels not only with the presence of COPD, but also with the severity of airway obstruction. The univariate logistic regression analysis has shown that serotonin levels were independently associated with presence of COPD also after adjusting for age, gender, BMI, smoking status, and oxidative stress indices.

Lau et al.,[32] investigated the role of serotonin in the pathogenesis of COPD and found higher levels of circulating serotonin in patients compared to healthy controls. Unlike us, they examined only male COPD subjects who were significantly older than controls, and found a positive correlation between serotonin levels and age in pathological subjects. Moreover, in their analysis they prevalently included moderate to very severe COPD cases, finding no differences in serotonin levels according to disease progression. In our study, we confirmed the presence of higher blood serotonin levels in COPD compared to age- and sex-matched controls. As opposed to the study of Lau et al., our patients had a mild-moderate degree of airway obstruction (FEV1 > 50%). From this point of view these patients can be considered in the early phase of the disease. In fact, they were all newly diagnosed patients who had not yet started a treatment. These data support the hypothesis that serotonin could be a predictive marker of the onset of COPD. Moreover, the inverse correlation that we found between serotonin levels and FEV1 and FVC, suggests a relation of this molecule with the worsening of airway obstruction.

The ROC curve analysis for serotonin significantly discriminate patients with COPD from those without COPD and showed that the diagnostic accuracy is higher when serotonin is combined with TBARS and PSH. In particular, the triple combination of serotonin, TBARS and PSH increased significantly the AUC of the ROC curve. Although it is an interesting result, its clinical validity and usefulness needs to be further investigated. Moreover, Spearman's correlation analysis failed to find a relationship between serotonin and oxidative stress biomarkers. This could be due to the low number of subjects involved, in particular to the absence of severe COPD subjects. The small number of cases, and the lack of advanced stage COPD patients represent the main limitations of our work. On the other hand, our study is the first to investigate blood serotonin levels in a cohort of early COPD cases and has several strengths, like its prospective case-match design, the accurate statistical analysis, and the research of associations with other well-established biomarkers of oxidative stress.