Ankylosing Spondylitis, Chronic Fatigue and Depression Improved After Stromal Vascular Fraction Treatment for Osteoarthritis

A Case Report

Bora Bright; Ralph Bright; Pelin Bright; Amita Limaye

Disclosures

J Med Case Reports. 2018;12(238) 

In This Article

Background

Osteoarthritis (OA) is characterized by degeneration of articular cartilage, sclerosis of the subchondral bone, and marginal osteophyte formation. OA is associated with chronic pain, stiffness, decreased range of motion and joint deformity, muscle wasting, and tendonitis. The diagnosis of OA relies on clinical symptoms, physical findings, and radiographic findings. Discordance is often found between radiological findings and symptomatic findings of OA.[1] The etiology of OA appears to be multifactorial with hereditary, metabolic, hormonal, developmental, and mechanical components.[2] Apart from mechanical and genetic factors that contribute to development of OA, age has been a primary risk factor.[3] Age-associated changes in cartilage extracellular matrix (ECM), increase in inflammatory cytokine milieu locally, and increased free radical species have been implicated in the loss of ability of cartilage to adapt to mechanical stress or load.[4] Interestingly, depletion of the mesenchymal stem cells (MSCs) in local stromal population has been indicated to be associated with OA.[5,6] Whether it is a cause or an effect of OA remains to be elucidated. Current treatments include lifestyle modifications and diet together with pain relief using paracetamol or non-steroidal anti-inflammatory drugs (NSAIDs) in early OA. However, treatment of the advanced disease relies on total joint replacement which is found to be associated with complications. The lifespan of the prosthesis is limited; therefore, surgery is delayed until symptoms limit a patient's lifestyle and is avoided in younger patients. Since most of the abovementioned modalities only provide symptomatic relief, the regenerative potential of stem cells to repair injured and damaged tissue is a promising new strategy in the field of orthopedics. Of these options, patient-derived (autologous), minimally manipulated, MSCs, for the treatment of chronic diseases such as OA is being investigated to achieve clinical significance.[7]

Here we describe a case report on the healing effect of adipose-derived stromal vascular fraction (SVF) in a woman with peripheral spondyloarthritis, grade 2 sacroiliitis, enthesitis, and ankylosing spondylitis (AS) that were confirmed by X-ray, magnetic resonance imaging (MRI), computed tomography (CT) scan, and ultrasound scan. AS is a form of arthritis that primarily impacts the spine, causing inflammation, leading to chronic pain. AS symptoms often include disturbances of sleep, fatigue, depression, and anxiety;[8] therefore, they have a profound impact on the patient's quality of life. AS is predominantly detected in patients between the ages of 20 and 40 years and can be triggered by multiple factors that are similar to those for OA. Conditions associated with inflammation such as OA and AS are controlled by NSAIDs and common analgesic medication.[9]

MSCs can be found throughout the body. Adipose tissue is an excellent source of stem cells having 10–100 times more MSCs than bone marrow.[10] SVF can be easily obtained from loose connective tissue that is associated with adipose tissue by a process of liposuction under local anesthesia. SVF is a collection of a heterogeneous population of: MSCs; hematopoietic stem cells (HSCs); regulatory T cells (Treg); pericyte-endothelial cells (ECs); mast cells; a complex microvascular structure of fibroblasts, white blood cells (WBC), dendritic cells (DCs), and intra-adventitial smooth muscle-like cells; and ECM. The immunomodulatory, anti-inflammatory, and regenerative properties of SVF are not attributed to a single type of population residing within, although they are effects of all the types of cells constituting the SVF. The use of SVF as a medical treatment is increasing due to the abundance of its cellular properties, ease of collection, immunomodulatory properties, and safety.[11]

The aim of this treatment was to reduce pain associated with OA and improve our patient's quality of life without the need for NSAIDs or analgesics. Our patient was expected to show significant improvements in her OA, along with some minor improvements to general inflammation present within her body. Interestingly, short-term follow-up presented improvements in her OA as well as comorbidities of AS, depression, anxiety, and fatigue. A 3-year follow-up (in June 2017) including multiple injections of SVF indicated significant changes in her quality of life. All conditions maintained their improvements at the follow-up intervals.

Comments

3090D553-9492-4563-8681-AD288FA52ACE

processing....