Extrapulmonary Nontuberculous Mycobacterial Disease Surveillance — Oregon, 2014–2016

David C. Shih, MD; P. Maureen Cassidy, MPH; Kiran M. Perkins, MD; Matthew B. Crist, MD; Paul R. Cieslak, MD; Richard L. Leman, MD


Morbidity and Mortality Weekly Report. 2018;67(31):854-857. 

In This Article

Abstract and Introduction


Nontuberculous mycobacteria (NTM), ubiquitous in soil and water, usually infect immunocompromised persons. However, even healthy persons are susceptible to infection through percutaneous inoculation. Although 77% of NTM diseases manifest as primarily pulmonary illnesses,[1] NTM also infect skin, bones, joints, the lymphatic system, and soft tissue. NTM infections can have incubation periods that exceed 5 years,[2] often require prolonged treatment, and can lead to sepsis and death. Extrapulmonary NTM outbreaks have been reported in association with contaminated surgical gentian violet,[3] nail salon pedicures,[4] and tattoos received at tattoo parlors,[5] although few surveillance data have been available for estimating the public health burden of NTM.* On January 1, 2014, the Oregon Health Authority designated extrapulmonary NTM disease a reportable condition. To characterize extrapulmonary NTM infection, estimate resources required for surveillance, and assess the usefulness of surveillance in outbreak detection and investigation, 2014–2016 extrapulmonary NTM surveillance data were reviewed, and interviews with stakeholders were conducted. During 2014–2016, 134 extrapulmonary NTM cases (11 per 1 million persons per year) were reported in Oregon. The age distribution was bimodal, with highest incidence among persons aged <10 years (20 per 1 million persons per year) and persons aged 60–69 years (18 per 1 million persons per year). The most frequently reported predisposing factors (occurring within 14–70 days of symptom onset) were soil exposure (41/98; 42%), immunocompromised condition (42/124; 34%), and surgery (32/120; 27%). Overall, 43 (33%) patients were hospitalized, 18 (15%) developed sepsis, and one (0.7%) died. Surveillance detected or helped to control two outbreaks at low cost. Jurisdictions interested in implementing extrapulmonary NTM surveillance can use the Council of State and Territorial Epidemiologists (CSTE) standardized case definition[6] for extrapulmonary NTM reporting or investigative guidelines maintained by the Oregon Health Authority.[7]

In Oregon, electronic laboratory reports of reportable diseases are uploaded daily to the statewide communicable disease database, the Oregon Public Health Epidemiologists' User System (Orpheus). Staff members from the patients' local public health jurisdiction investigate extrapulmonary NTM cases by collecting clinical data and information on any predisposing factors occurring during the 14–70 days preceding symptom onset from medical charts and patient interviews, then enter the data into Orpheus. An epidemiologist reviews case data for quality and completeness and generates annual state infectious disease epidemiology reports. The Oregon Health Authority does not require laboratories to retain extrapulmonary NTM isolates.

For this analysis, a case of extrapulmonary NTM was defined (according to Oregon Health Authority investigative guidelines at the time) as a culture-confirmed extrapulmonary NTM infection involving skin or soft tissue from a wound or abscess, lymphatic tissue, urine, or other normally sterile site (e.g., blood or spinal fluid), in an Oregon resident, with the first specimen collected during January 1, 2014–December 31, 2016, and extrapulmonary NTM symptom onset after December 31, 2012. Cultures that were positive only for Mycobacterium gordonae, a common environmental contaminant, were excluded. Patient demographics and predisposing factors (prespecified by literature review and expert opinion) were described, and incidence was calculated using 2014–2016 Oregon population estimates from the Portland State University Population Research Center. Resource requirement estimates were developed through interviews with stakeholders, including the Oregon Health Authority epidemiologist whose assignments include extrapulmonary NTM surveillance, the informatics programmer, and three local public health nurses who estimated public health personnel time to perform extrapulmonary NTM surveillance. The utility assessment consisted of a review of how extrapulmonary NTM surveillance data were used to identify or investigate outbreaks.