Vital Signs

Containment of Novel Multidrug-Resistant Organisms and Resistance Mechanisms — United States, 2006–2017

Kate Russell Woodworth, MD; Maroya Spalding Walters, PhD; Lindsey M. Weiner, MPH; Jonathan Edwards, MStat; Allison C. Brown, PhD; Jennifer Y. Huang, MPH; Sarah Malik, PhD; Rachel B. Slayton, PhD; Prabasaj Paul, PhD; Catherine Capers, MA; Marion A. Kainer, MD; Nancy Wilde; Alicia Shugart, MA; Garrett Mahon, MPH; Alexander J. Kallen, MD; Jean Patel, PhD; L. Clifford McDonald, MD; Arjun Srinivasan, MD; Michael Craig, MPP; Denise M. Cardo, MD

Disclosures

Morbidity and Mortality Weekly Report. 2018;67(13):396-401. 

In This Article

Conclusions and Comments

Although the proportion of Klebsiella spp. and E. coli that had either an ESBL or CRE phenotype both declined during 2006–2015, larger decreases and a lower overall percent resistant were observed for the CRE phenotype. This difference might be attributable, at least in part, to the more directed response employed to slow the spread of CRE once it was identified. Although CDC's containment approach had not yet been fully initiated when the decline in CRE began, these data suggest that an early aggressive response, as outlined in CRE-specific infection prevention recommendations released beginning in 2009,[6] can slow emergence and even decrease the occurrence of infections from resistant pathogens. As laboratory capacity improved, ARLN testing volume and public health responses increased over the first three quarters of 2017, demonstrating that recent investments in detection and response capacity are facilitating prompt identification of and response to emerging resistant organisms. Notably, 221 isolates with non-KPC carbapenemases were identified; these rare forms of resistance have the potential to add to the U.S. CRE burden and represent an important opportunity to prevent the spread of novel resistance at its earliest stage. Findings from these enhanced prevention efforts are being used to further refine detection and prevention strategies.

Contact screening identified previously undetected transmission and appeared to have the highest yield in post–acute care facilities with higher acuity patients. Challenges in these settings that might facilitate transmission of resistant organisms include long duration of facility stay, less aggressive use of transmission-based precautions because of concerns about resident quality of life, high staff turnover rates, and less expertise and training in infection control. Previous work has also identified these settings as potential amplifiers of CRE transmission,[11] underscoring the importance of providing ongoing support to these facilities when targeted resistant organisms are identified. This support includes infection control assessments to improve adherence to recommended interventions and screening of contacts to identify asymptomatic carriers.

Although this analysis focused on carbapenemase-producing organisms, the containment strategy can prevent the spread of other emerging antimicrobial resistant pathogens, including Candida auris and pan-resistant bacteria. Using existing surveillance systems, including ARLN, further work is under way to better identify and understand new threats, including those that are emerging outside the United States. CDC continues to work to develop tests for new resistance mechanisms that can be made available via ARLN. Resistance is constantly evolving, and the containment strategy and ARLN are designed to be flexible and nimble to rapidly detect and respond to new threats.

Despite improvements in capacity to detect carbapenemases in clinical isolates and asymptomatic carriers through ARLN, challenges remain. Transmission in one facility in a region has the potential to affect all of the facilities and patients in a region through patient sharing; therefore, recognition by health care facilities of the importance of an aggressive, early, and coordinated response is needed to ensure responses are timely and comprehensive. Mathematic modeling of the containment strategy based on a single U.S. state's patient transfer network suggests that an intervention resulting in a 20% reduction in transmission would result in approximately 1,600 fewer clinical cases, a relative reduction of about 76%, 3 years after introduction (CDC, unpublished data, 2018). In addition, commitment from health care personnel and health care facilities to improve adherence to infection control interventions that can prevent transmission, especially in post–acute care settings, is necessary to prevent amplification of emerging resistance. For situations in which a targeted form of antimicrobial resistance has emerged more widely in a region, containment strategies might be less effective; additional work is required for these situations to identify the optimal strategies to reduce the prevalence of endemic resistant organisms. Finally, current interventions are challenging to implement and sustain; new interventions to reduce transmission are needed to supplement currently available prevention measures.

Public health departments, because of their expertise and ability to work across health care facilities, are uniquely positioned to facilitate these responses to emerging antimicrobial resistance. Since 2009, CDC has provided resources to develop state and local health care–associated infection programs; currently, CDC supports approximately 500 persons in state and local health departments to work on health care-associated infections and antimicrobial resistance. Details on funding provided to each state to combat antimicrobial resistance are provided in CDC's antimicrobial resistance map (https://wwwn.cdc.gov/arinvestments).

The findings in this report are subject to at least four limitations. First, resistance data in NHSN are collected using the final interpretations of resistant, intermediate, or sensitive, and this analysis does not account for differences among laboratories in the breakpoints used for interpretation or for changes in breakpoints over time. Enterobacteriaceae breakpoints for carbapenems and some cephalosporins were lowered during the analysis period. This might have resulted in an increase in isolates reported as resistant in later years of this analysis and could have resulted in an underestimation of any reductions in CRE or ESBLs described. Second, NHSN data analyzed for this report represent only isolates from two infection types (CAUTI and CLABSI); changes in colonization or other infection types would not be identified. Third, although greater reductions were seen in the percentage of organisms that were CRE compared to those with the ESBL phenotype, this analysis is unable to identify the exact cause for this difference. Finally, some states and health care facilities with colonization testing capacity chose to perform screening in-house rather than through the ARLN regional laboratory; these tests are not reported to ARLN and therefore are not included in this report, resulting in an underestimation of the true volume of screening conducted.

Limiting the spread of emerging forms of antibiotic resistance is a public health priority, and a timely and coordinated effort among health care facilities, local and state health departments, and CDC is needed to accomplish this goal. Research is already under way to expand control strategies through innovative approaches such as patient decolonization and microbiome manipulation, along with a focus on identifying strategies to decrease the time from specimen collection to public health response. Fortunately, with the parallel development of an enhanced prevention strategy for emerging antimicrobial resistance and implementation of advanced laboratory testing in ARLN, the critical tools for controlling the spread of antimicrobial resistance are now available nationwide. In the first year of ARLN implementation, CDC and state and local public health departments and public health laboratory partners have effectively increased the capacity to identify and respond to high concern organisms to prevent transmission of resistant pathogens. Although some challenges remain, this national public health strategy represents a critical step in the effort to decrease the impact of resistant pathogens.

Comments

3090D553-9492-4563-8681-AD288FA52ACE

processing....