Vital Signs

Containment of Novel Multidrug-Resistant Organisms and Resistance Mechanisms — United States, 2006–2017

Kate Russell Woodworth, MD; Maroya Spalding Walters, PhD; Lindsey M. Weiner, MPH; Jonathan Edwards, MStat; Allison C. Brown, PhD; Jennifer Y. Huang, MPH; Sarah Malik, PhD; Rachel B. Slayton, PhD; Prabasaj Paul, PhD; Catherine Capers, MA; Marion A. Kainer, MD; Nancy Wilde; Alicia Shugart, MA; Garrett Mahon, MPH; Alexander J. Kallen, MD; Jean Patel, PhD; L. Clifford McDonald, MD; Arjun Srinivasan, MD; Michael Craig, MPP; Denise M. Cardo, MD


Morbidity and Mortality Weekly Report. 2018;67(13):396-401. 

In This Article


Percentage of Enterobacteriaceae With CRE or ESBL Phenotypes in the National Healthcare Safety Network, 2006–2015.

Included in the analysis were central line–associated bloodstream infections (CLABSIs) and catheter-associated urinary tract infections (CAUTIs) associated with Escherichia coli or Klebsiella pneumoniae and reported to CDC's National Healthcare Safety Network (NHSN) during 2006–2015 from adult medical, surgical, or medical/surgical intensive care units at short-stay acute care hospitals. The Centers for Medicare & Medicaid Services' (CMS) Hospital Inpatient Quality Reporting Program mandated reporting of CLABSI and CAUTI data to NHSN starting in 2011 and 2012, respectively; data from previous years represent voluntary reporting or reporting to comply with state or local mandates. National pooled mean percentages for Enterobacteriaceae with CRE phenotype (isolates resistant to imipenem, meropenem, doripenem, or ertapenem), and ESBL phenotype (isolates that tested intermediate or susceptible to carbapenems and intermediate or resistant to ceftazidime, cefepime, ceftriaxone, or cefotaxime) were calculated. Log binomial regression models were used to estimate the average annual change in the proportion of E. coli and K. pneumoniae that had a CRE or ESBL phenotype. P-values <0.05 were considered statistically significant. Sensitivity analyses were performed to account for the change in hospitals reporting to NHSN each year. The results of the log binomial regression model were confirmed by a robust variance Poisson model.

Enhanced Detection and Response.

CRE and CRPA (P. aeruginosa resistant to imipenem, meropenem, or doripenem) isolates were submitted to ARLN laboratories for testing for carbapenemases. Among Enterobacteriaceae, E. coli, K. oxytoca, K. pneumoniae, and Enterobacter spp. were targeted for submission. Testing at ARLN laboratories included carbapenemase production testing and molecular detection of genes encoding for the five carbapenemases of primary public health concern: Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-beta-lactamase (NDM), Verona integron encoded metallo-beta-lactamase (VIM), imipenemase (IMP), and oxacillinase-48-like carbapenemase (OXA-48). ARLN laboratories were asked to report positive findings to local public health authorities and CDC within 1 day and to submit testing summaries to CDC monthly.

For each carbapenemase-producing isolate detected, CDC guidance recommends that state health department staff members contact the health care facility to review infection control measures and consider performing on-site infection control assessments. If indicated, contacts of the index patient are screened to detect transmission; testing capacity for this screening is provided through ARLN. Response activities continue until transmission is controlled. Screening results were stratified by whether the screening took place in a short-stay acute care hospital or a post–acute care facility (i.e., long-term acute care hospital or nursing home).