Jonathan D. Gelber, MD, MS; Lonnie Soloff, DPT, PT, ATC; Mark S. Schickendantz, MD


J Am Acad Orthop Surg. 2018;26(6):204-213. 

In This Article

Abstract and Introduction


Overhead athletes subject their shoulders to extreme repetitive torque, compression, distraction, and translation stresses, resulting in adaptive changes of the soft tissues and osseous structures within and around the glenohumeral joint. These anatomic adaptations result in biomechanical enhancements, which improve performance. Understanding the difference between necessary and adaptive changes and pathologic findings is critical when making treatment decisions. Injuries to the shoulder of the overhead athlete can be generally classified into three groups: internal impingement, internal impingement with acquired secondary anterior instability, and primary anterior or multidirectional instability. Although advances in surgical techniques have allowed surgeons to address the pathology in these groups, merely attempting to restore the shoulder to so-called normal can adversely alter adaptive changes that allow high levels of performance.


The glenohumeral joint of overhead athletes, especially pitchers, is subject to repetitive torque, compression, distraction, and translation. Over time, these stresses result in adaptive changes of the rotator cuff, capsulolabral complex, biceps tendon, and humeral head as well as other soft-tissue and osseous structures within and around the glenohumeral joint. A clear understanding of these adaptive changes is vital for appropriate diagnosis and management of sports-related injuries and associated pathology in this population. Familiarity with the anatomy of the thrower's shoulder and the contrast between pathoanatomy and adaptive changes that are critical for performance, along with careful evaluation of patient history, physical examination findings, and changes on MRI, can help the clinician manage expectations for return to play (RTP) and avoid overtreatment in overhead-throwing athletes.