Sports-related Concussions: Diagnosis, Complications, and Current Management Strategies

Jonathan G. Hobbs, MD; Jacob S. Young, BS; Julian E. Bailes, MD

Disclosures

Neurosurg Focus. 2016;40(4):e5 

In This Article

Treatment

General Management of SRCs and Return to Play

Individuals usually recover from SRCs within days to weeks, with complete resolution of symptoms and cognitive improvement.[14,43,95] General management of SRCs focuses on mental and physical rest until an athlete is symptom free. Following this clinical improvement, a graduated increase in physical activity is instituted before an individual may return to play.[95]

In its "Heads Up to Health Care Providers" campaign, the Centers for Disease Control and Prevention published return-to-play steps adapted from the International Concussion Consensus Guidelines to help safely return athletes to play (Table 2).[95] This graduated, stepwise return-to-play protocol is also supported by the American Academy of Pediatrics.[86] Each stage of the graduated increase is expected to take 24 hours, and the athlete must remain asymptomatic to qualify to proceed to the next tier of activity. If any symptoms return, the athlete is probably pushing too hard to return and should stop all physical activity. In that situation, the athlete is instructed to rest for 24 hours, and then return to the previous phase and resume activity at that level. Once the athlete is again asymptomatic at that level, they may continue to proceed to gradually increasing levels of activity and continue toward returning to play, as long as they remain symptom free.[89] Most athletes will recover quickly and fully after a concussion, but should symptoms worsen at any time, remain present for greater than 10–14 days, or if athletes have a history of multiple concussion or mood disorders, a referral to a concussion specialist is warranted. It is the current practice of the senior author to evaluate athletes with a suspected SRC in a formal clinical setting before clearing them to return to the field of play.

The American Academy of Neurology has also published an evidence-based guideline for managing athletes with concussion.[43] This guideline recommends immediate removal from play of an athlete with a concussion until they can be assessed by a licensed health care professional trained in recognizing concussion. The guideline recommends assessing each athlete individually, with no set timeline for safe return to play. For example, high school and younger athletes should be managed more conservatively, because they can take longer to recover than college athletes. This guideline also concludes that absolute rest during concussion recovery is not supported with sufficient evidence, and therefore activities that do not worsen symptoms and do not pose a risk of repeat concussion may be included in the concussion management plan.

Neurosurgical Management

The vast majority of patients with SRCs or mTBI present with a GCS score of 14–15 and do not require neurosurgical intervention. Accordingly, the American College of Emergency Physicians' 2008 policy on mTBI recommends discharging patients unless they have an ICH.[52] In contrast, patients with ICH, regardless of severity, are typically observed in the ICU.[117,147]

One study using the National Trauma Data Bank found that in adult patients with an ICD-9 diagnosis of intracranial injury and a GCS score of 14–15 in the emergency department who were admitted to the hospital, isolated subdural hemorrhages were the most common injury observed (37% of patients).[141] Subarachnoid hemorrhages were the second most common injury (26% of patients), and the rate of neurosurgical intervention was 8.8%. Epidural hemorrhages most frequently required neurosurgical intervention, whereas subarachnoid hemorrhages and contusions required surgical intervention least frequently. Furthermore, given the large number of subdural hemorrhages observed, they represented the most common ICH complicating mTBI to require neurosurgery. Perhaps as expected, patients with coagulopathy or abnormal fibrinolysis are more likely to deteriorate following mild to moderate TBI and require surgery.

Pharmacological Treatment

To date, there have been no studies that demonstrate that pharmacological treatments are effective at speeding the recovery from a concussion or diminishing the deficits attributed to the injury.[8,118] In fact, there is a great need for large-scale, multicenter studies to evaluate the benefits of medications for treating prolonged postconcussion symptoms and to determine if there is any benefit to neuroprotective therapies. Nevertheless, patients who are experiencing prolonged symptoms (either PCS or PPCS) that significantly impact their daily activities may benefit from medical treatment of their ongoing symptoms. The decision to treat with pharmacological agents must be made on an individual basis and should take into account the degree and duration of impairment from the symptoms and the potential adverse effects of starting a medication.

Petraglia et al. provide an excellent review of the pharmacotherapeutics used to treat the somatic complaints, sleep disturbances, emotional difficulties, and cognitive difficulties that may exist following mTBI.[118] In general, agents should be started at their lowest effective dose and slowly titrated up to maximize clinical response and minimize side effects. Furthermore, agents that may contribute to the confusion and cognitive slowing seen in the patient should be avoided so as to not confound the patient's clinical examination with a drug's adverse effects. Furthermore, it is advisable to attempt to avoid medications that are known to lower the seizure threshold.

Considerable effort has been expended to investigate whether naturally occurring supplements and compounds that may possess antiinflammatory or neuroprotective effects could be beneficial in the aftermath of a concussion.[119] Although human studies are lacking, these agents may address the underlying pathophysiological processes responsible for the long-term symptoms following concussions, and offer a relatively limited side-effect profile.

For instance, long-chain polyunsaturated fatty acids are an important structural component of the neuronal synaptosomal plasma membrane, but they are underrepresented among the other lipids consumed via our dietary intake. The benefit of pretraumatic supplementation of docosahexaenoic acid (DHA), a long-chain polyunsaturated fatty acid, has been demonstrated in multiple rodent models of TBI.[119] In rodents, DHA supplementation has been shown to be neuroprotective following either focal or diffuse TBI, to reduce the number of damaged axons, to reduce excitotoxicity, and to provide numerous other multimechanistic benefits to the posttraumatic brain. Well-designed trials will be required to determine whether DHA supplementation in athletes may improve outcomes following SRCs. Green tea is another commonly discussed product that contains many natural compounds that have been investigated for their potentially neuroprotective antioxidant and antiinflammatory properties.[23,55,56,66,80] One study demonstrated that green tea reduced the amount of tau phosphorylation and beta-amyloid deposition in a mouse model of Alzheimer disease, which may be relevant given the pathological findings in CTE.[127] These substances provide a small snapshot of the potential value of natural supplements for both the prevention and treatment of concussions, and human studies are necessary to determine how and when their use will benefit athletes in a practical, cost-effective, and well-tolerated manner.

In the future, there is the potential for advanced imaging techniques such as fMRI to help guide our use of medications in the management of postconcussion symptoms. For example, fMRI studies have shown that postconcussion depression shares underlying pathophysiological features with the limbic-frontal model of depression and may be amenable to treatment with traditional antidepressive agents.[21,22] Biomarkers may also serve a future role in the identification of patients whose symptoms are likely to persist and who thus may require upfront management with pharmacological agents rather than a watchful waiting approach.

processing....