Development of Medical Countermeasures to Middle East Respiratory Syndrome Coronavirus

Timothy M. Uyeki; Karl J. Erlandson; George Korch; Michael O'Hara; Michael Wathen; Jean Hu-Primmer; Sally Hojvat; Erik J. Stemmy; Armen Donabedian


Emerging Infectious Diseases. 2016;22(7):e1-e11. 

In This Article

Strategies for Potential use of MERS-CoV Medical Countermeasures

MERS-CoV infection could theoretically be prevented by vaccination, pre- or postexposure antiviral chemoprophylaxis, or passive immunoprophylaxis of persons in affected countries at increased risk for MERS-CoV exposure (e.g., healthcare personnel, persons who work with camels) or persons at higher risk for more severe disease, including persons >65 years of age and those with chronic medical conditions. Therapeutic drugs with specific activity against MERS-CoV (e.g., antiviral drugs, immunotherapeutic treatments) or that target the host immune response could be used for treatment of human illness caused by MERS-CoV infection or for pre- or postexposure prophylaxis. Before human clinical trials of potential MERS-CoV medical countermeasures are started, proof-of-concept data must be obtained from in vivo studies of experimentally infected animals. Such data may indicate a product's potential efficacy and provide a mechanism for selection of available medical countermeasure candidates. In addition, MERS-CoV vaccines could be developed for animals and used for vaccination of dromedaries on the Arabian Peninsula and in source countries for camel imports to the Horn of Africa to reduce MERS-CoV transmission among camels and possibly from camels to humans.