Perspectives on West Africa Ebola Virus Disease Outbreak, 2013–2016

Jessica R. Spengler; Elizabeth D. Ervin; Jonathan S. Towner; Pierre E. Rollin; Stuart T. Nichol


Emerging Infectious Diseases. 2016;22(6):956-963. 

In This Article

Abstract and Introduction


The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013–2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community's insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Continued efforts during the outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research.


In 1976, the investigation of concurrent outbreaks of a hemorrhagic fever syndrome (Ebola virus disease [EVD]) in Zaire (currently Democratic Republic of Congo) and Sudan (currently Republic of South Sudan)[1,2] led to isolation of 2 viruses now referred to as Ebola virus (EBOV) and Sudan virus, respectively, and to identification of a newly recognized viral hemorrhagic fever genus, Ebolavirus (family Filoviridae). Ebolaviruses now include EBOV, Sudan virus, Reston virus, Taï Forest virus and Bundibugyo virus. The other genus in the family Filoviridae is Marburgvirus, consisting of Marburg virus and Ravn virus (termed marburgviruses; MBGV), both of which are associated with severe disease (Marburg virus disease [MVD]) in humans.[3,4] Before 2013, the largest Ebola outbreak was associated with Sudan virus in Gulu, Uganda, in 2000 that caused 425 cases (224 fatal).[5] The largest EVD outbreak associated with EBOV (the same virus responsible for the 2013–2016 outbreak in West Africa) was in Zaire (1976) and caused 318 cases and an associated case-fatality rate of 88%.[2]

The EVD outbreak in Guinea, Liberia, and Sierra Leone was unprecedented in its sheer magnitude and the emergence of EBOV outside the Congo basin. The effect of the outbreak is profound; as of March 27, 2016, a total of 28,646 EVD cases and 11,323 deaths had been documented.[6] Furthermore, this outbreak prompted an unparalleled international response: 7 US agencies operated 9 laboratories, and 11 international agencies operated 13 laboratories performing in-country diagnostic tests (Figure 1). The Centers for Disease Control and Prevention (CDC) supported ≈2,300 international deployments of ≈1,600 total personnel (both CDC and non-CDC staff);[7] and thousands of personnel from international aid agencies, e.g., World Health Organization, Médecins Sans Frontières, International Rescue Committee, International Finance Corporation, and Public Health England provided in-country support.

Figure 1.

Geographic distribution of diagnostic laboratories currently or previously operational in West Africa during the 2014–2015 Ebola virus response, as of December 9, 2015. Data are from World Health Organization Ebola virus disease situation reports.

The EVD outbreak was not restricted to the 3 heavily affected West African countries; cases also occurred in Senegal, Nigeria, and Mali. In addition, EBOV-infected foreign aid workers were transported for treatment to Europe and the United States, and naturally imported cases (United States, Italy, United Kingdom) and domestic transmission (Spain, United States) were reported for the first time in several countries.[6] The US EVD response included establishment of EBOV testing in the US Laboratory Response Network. As a result, 57 state, county, and local public health laboratories in 44 states currently are qualified to perform presumptive EBOV real-time quantitative PCR (qPCR).

This EVD outbreak highlights globalization, international social responsibility, and the importance of global health security. As the response to the outbreak progresses, the international research community must continue to address questions of EBOV emergence, pathogenesis, and transmission and advance therapeutic and vaccine development. National and international organizations must critically assess the details of this outbreak and the corresponding response to enable improved response and control of emerging viral outbreaks.