Troponin Rise Predicts CHD, HF, Mortality in Healthy People: ARIC Analysis

Veronica Hackethal, MD

June 15, 2016

CHICAGO, IL — Increases in levels of cardiac troponin T by high-sensitivity assay (hs-cTnT) over time are associated with later risk of death, coronary heart disease (CHD), and especially heart failure in apparently healthy middle-aged people, according to a report published June 8, 2016 in JAMA Cardiology[1].

The novel findings, based on a cohort of >8000 participants from the Atherosclerosis Risk in Communities (ARIC) study followed up to 16 years, are the first to show "an association between temporal hs-cTnT change and incident CHD events" in asymptomatic middle-aged adults," write the authors, led by Dr John W McEvoy (Johns Hopkins University School of Medicine, Baltimore, MD).

Individuals with the greatest troponin increases over time had the highest risk for poor cardiac outcomes. The strongest association was for risk of heart failure, which reached almost 800% for those with the sharpest hs-cTnT rises.

Intriguingly, those in whom troponin levels fell at least 50% had a reduced mortality risk and may have had a slightly decreased risk of later HF or CHD.

"Serial testing over time with high-sensitivity cardiac troponins provided additional prognostic information over and above the usual clinical risk factors, [natriuretic peptide] levels, and a single troponin measurement. Two measurements appear better than one when it comes to informing risk for future coronary heart disease, heart failure, and death," McEvoy told heartwire from Medscape.

He cautioned, though, that the conclusion is based on observational data and would need to be confirmed in clinical trials. Moreover, high-sensitivity cardiac troponin assays are widely used in Europe but are not approved in the US.

An important next step after this study, according to an accompanying editorial from Dr James Januzzi (Massachusetts General Hospital, Boston, MA), would be to evaluate whether the combination of hs-troponin and natriuretic peptides improves predictive value in this population[2].

"To the extent prevention is ultimately the holy grail for defeating the global pandemic of CHD, stroke, and HF, the main reason to do a biomarker study such as this would be to set the stage for a biomarker-guided strategy to improve the medical care for those patients at highest risk, as has been recently done with [natriuretic peptides]," he wrote.

The ARIC prospective cohort study entered and followed 8838 participants (mean age 56, 59% female, 21.4% black) in North Carolina, Mississippi, Minneapolis, and Maryland from January 1990 to December 2011. At baseline, participants had no clinical signs of CHD or heart failure.

Levels of hs-cTnT, obtained 6 years apart, were categorized as undetectable (<0.005 ng/mL), detectable (≥0.005 ng/mL to <0.014 ng/mL), and elevated (>0.014 ng/mL).

Troponin increases from <0.005 ng/mL to 0.005 ng/mL or higher independently predicted development of CHD (HR 1.41; 95% CI 1.16–1.63), HF (HR 1.96; 95% CI 1.62–2.37), and death (HR 1.50; 95% CI 1.31–1.72), compared with undetectable levels at both measurements.

Hazard ratios were adjusted for age, sex, race, body-mass index, C-reactive protein, smoking status, alcohol-intake history, systolic blood pressure, current antihypertensive therapy, diabetes, serum lipid and cholesterol levels, lipid-modifying therapy, estimated glomerular filtration rate, and left ventricular hypertrophy.

Subjects with >50% increase in hs-cTnT had a significantly increased risk of CHD (HR 1.28; 95% CI 1.09–1.52), HF (HR 1.60; 95% CI 1.35–1.91), and death (HR 1.39; 95% CI 1.22–1.59).

Risks for those end points fell somewhat for those with a >50% decrease in hs-cTnT (CHD: HR 0.47; 95% CI 0.22–1.03; HF: HR 0.49 95% CI 0.23–1.01; death: HR 0.57 95% CI 0.33–0.99).

Among participants with an adjudicated HF hospitalization, the group writes, associations of hs-cTnT changes with outcomes were of similar magnitude for those with HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF).

Few biomarkers have been linked to increased risk for HFpEF, and few effective therapies exist for it. That may be due to problems identifying and enrolling patients with HFpEF in clinical trials, Dr McEvoy pointed out.

"We think the increased troponin over time reflects progressive myocardial injury or progressive myocardial damage," Dr McEvoy said. "This is a window into future risk, particularly with respect to heart failure but other outcomes as well. It may suggest high-sensitivity troponins as a marker of myocardial health and help guide interventions targeting the myocardium."

Moreover, he said, "We think that high-sensitivity troponin may also be a useful biomarker along with [natriuretic peptides] for emerging trials of HFpEF therapy."

But whether hs-troponin has the potential for use as a screening tool is a question for future studies, according to McEvoy.

In his editorial, Januzzi pointed out several implications of the study, including the possibility for lowering cardiac risk in those with measurable hs-troponin, and that HF may be the most obvious outcome to target. Also, optimizing treatment and using cardioprotective therapies may reduce risk linked to increases in hs-troponin. Finally, long-term, large clinical trials on this issue will require a multidisciplinary team effort from various sectors.

"What is needed now are efforts toward developing strategies to upwardly bend the survival curves of those with a biomarker signature of risk, leveraging the knowledge gained from studies such as the report by McEvoy et al to improve public health," he concluded.

The study was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, and the PJ Schafer fund for early career investigators and the Magic That Matters Fund at Johns Hopkins. Roche Diagnostics donated the reagents for the hs-cTnT and C-reactive protein assays in this study. McEvoy reports receiving National Institutes of Health grant funding; disclosures for the coauthors are listed in the article. Januzzi reports grant support from Siemens, Singulex and Prevencio; support in part from the Hutter Family Professorship at the Harvard Medical School, consulting income from Roche Diagnostics, Critical Diagnostics, Sphingotec, Phillips, and Novartis; and participation in clinical-end-point committees for Novartis, Amgen, Janssen, and Boehringer Ingelheim.

For more from theheart.org, follow us on Twitter and Facebook.

Comments

3090D553-9492-4563-8681-AD288FA52ACE
Comments on Medscape are moderated and should be professional in tone and on topic. You must declare any conflicts of interest related to your comments and responses. Please see our Commenting Guide for further information. We reserve the right to remove posts at our sole discretion.
Post as:

processing....