Weight Loss-Induced Changes in Adipose Tissue Proteins Associated With Fatty Acid and Glucose Metabolism Correlate With Adaptations in Energy Expenditure

Stefan G. J. A. Camps; Sanne P. M. Verhoef; Nadia Roumans; Freek G. Bouwman; Edwin C. M. Mariman; Klaas R. Westerterp

Disclosures

Nutr Metab. 2015;12(37) 

In This Article

Results

Body Composition

After the 8 wk of VLED, weight loss was on average 9.9 ± 4.1 kg (P < 0.001) consisting of 7.9 ± 3.3 kg of fat mass (FM) and 2.0 ± 2.2 kg of fat free mass (FFM) (Table 1). Subjects lost on average 10.7 ± 4.1 % (P < 0.001) of the starting weight. FM decreased from 41.8 ± 6.3 % to 37.3 ± 7.5 % (P < 0.001). The data showed a large inter-individual variation in weight loss. The variation in weight loss was not explained by different levels of physical activity at baseline or 8 wk.

Energy Expenditure

TEE decreased significantly from 12.65 ± 2.08 MJ/d at baseline to 10.38 ± 1.95 MJ/d (P < 0.001) after the VLED; a decrease of 17.5 ± 11.9 % (P < 0.001).

REE decreased significantly from 7.54 ± 1.05 MJ/d at baseline to 6.70 ± 0.87 MJ/d (P < 0.001) after 8 wk of VLED, which is a decrease of 10.8 ± 6.6 % (P < 0.001). The decrease was explained by the reduced body weight and adaptive thermogenesis in response to the diet.

AEE decreased from 4.42 ± 1.47 MJ/d at baseline to 3.27 ± 1.24 MJ/d after 8 wk of energy restriction (P < 0.001); a decrease of 22.8 ± 28.7 % (P < 0.001) (Table 1).

Blood Glucose

Fasting glucose concentration at baseline was on average 4.9 ± 0.5 mmol/l and was not different after weight loss (4.8 ± 0.6 mmol/l).

Proteins

Fatty acid binding protein 4 (FABP4) increased by 31.3 ± 87.0 % during VLED (P < 0.05). Fructose-bisphosphate aldolase C (AldoC) decreased significantly with 53.2 ± 37.0 % during the diet (P < 0.001). There was no significant change in short chain 3-hydroxyacyl-CoA dehydrogenase (HADHsc) during the VLED-period (Fig. 1).

Figure 1.

Fold changes of post-WL (8 wk) compared to pre-WL (0 wk). Fold changes are obtained by dividing the average spot intensity of the post-WL group by that of the pre-WL group. Protein levels of FABP4, HADHsc and AldoC were analyzed using Western blotting. Representative results of 3 independent experiments are shown; Beta-actin was used as an internal control to ensure equal loading in all lanes of the gel (results not shown). *P < 0.05, **P < 0.001, FABP4, Fatty acid binding protein 4, HADHsc, Short chain 3-hydroxyacyl-CoA dehydrogenase, AldoC, Fructose-bisphosphate aldolase C

After 8 wk, the change in FABP4 was significant negatively correlated with the change in FM (R = −0.35, P < 0.05), while the change in AldoC was significant positively correlated with the change in FFM (R = 0.52, P < 0.001) (Table 2).

After weight loss, there was a significant positive correlation between the change in AldoC and the percentage change in TEE (R = 0.44, P < 0.01); more specifically there was a significant positive correlation between the change in AldoC and the percentage change in AEE (R = 0.44, P < 0.01). Furthermore, there was a significant positive correlation between the change in HADHsc and adaptive thermogenesis in REE after the VLED (R = 0.34, P < 0.05).

After 8 wk, there were positive correlations between the changes in FABP4 and HADHsc (R = 0.38, P < 0.05), between FABP4 and AldoC (R = 0.47, P < 0.01) and HADHsc and AldoC (R = 0.46, P < 0.01) (Table 2).

Comments

3090D553-9492-4563-8681-AD288FA52ACE

processing....