Radiation Dose Reduction Among Sub-speciality Cardiologists and the Importance of Tibial Protection

Thanh T Phan; Muhammad Awan; Dave Williams; Simon James; Andrew Thornley; Andrew G C Sutton; Mark de Belder; Nicholas J Linke; Andrew J Turley


Br J Cardiol. 2014;21(2):72-74. 

In This Article

Abstract and Introduction


Occupational radiation exposure in fluoroscopy-guided procedures is highest among medical staff, particularly cardiologists involved in interventional procedures. The danger of radiation-induced cataracts in operators, and the suggestion of a higher incidence of malignancy among interventional cardiologists, have led to a significant focus on radiation safety in the cardiac catheterisation laboratory. We examined our mean eye and tibia dosimeter reading trends between 1993 and 2011 (among different sub-specialised cardiologists), and the impact of shin tibia lead protectors. During the period 1993 to 2011 there was a steady decline in radiation doses. The dosimeter readings level fell from a peak of 34 to 6.0 mSv per year and 29 to 1.0 mSv per year at the eye and at the tibia, respectively. Interventional and electrophysiology/pacing cardiologists tend to have a trend of higher radiation doses at the tibia level as compared with non-interventional cardiologists. The introduction of shin leg protectors further reduced radiation exposure from a peak of 6.0 mSv per annum in 2008 to ≤1.0 mSv per annum. Radiation safety awareness and policies have led to a significant fall in operator radiation exposure. The shins, not protected by conventional lead aprons, receive a significant exposure. We have demonstrated that the routine wearing of shin protectors reduces radiation exposure to a minimal level.


Occupational radiation doses in fluoroscopy-guided interventional procedures are highest among medical staff using X-rays, particularly cardiologists involved in interventional procedures.[1] The danger of radiation, such as radiation-induced cataracts in operators,[2] has led to a significant focus on radiation safety in the cardiac catheterisation laboratory. Garments, lead goggles, skull caps, ceiling suspended shields, curtains under the table, and other protective equipment, provide a significant reduction in occupational doses.[3] It is necessary for cardiologists to wear personal dosimeters during procedures for personal safety, in order to monitor individual radiation exposure, to stay within recommended limits. The International Commission on Radiological Protection (ICRP) and the American College of Cardiology (ACC) recommend one worn outside the apron (on the left shoulder/neck), and the other worn under the apron at the waist, to ensure that the doses to total body are within limits. The current international recommendation is a maximum effective dose of 50 mSv per year and 100 mSv in a consecutive five-year period,[4] which is equivalent to 2,500–5,000 chest X-rays and 23–46 times more than the average person receives from natural ionising radiation (2.2 mSv a year). Currently, the UK Ionising Radiations Regulations 1999 (IRR99) from the Health and Safety Executive (HSE) limits the effective whole body dose to 20 mSv per annum.[5] The dose limits to the eye and tibia are 150 mSv and 500 mSv per annum, respectively.[5]

Studies have shown that radiation doses to the legs of interventional radiologists were likely to be greater than those to the hands, particularly when specialised lead protection was not used because of scattered radiation.[6] Among interventional cardiologists, there have been reports of leg hair loss secondary to chronic occupational radio-dermatitis.[7] We present here our mean dosimeter readings from extremity monitors for the eye lens and the tibia over an 18-year period (1993–2011) among different sub-specialised cardiologists, demonstrating differences in radiation exposure and the importance of shin protectors in reducing radiation exposure, especially as the shins are often ignored and are not protected by conventional lead aprons.