Type 1 Diabetes Through the Life Span: A Position Statement of the American Diabetes Association

Jane L. Chiang; M. Sue Kirkman; Lori M.B. Laffel; Anne L. Peters

Disclosures

Diabetes Care. 2014;37(7):2034-2054. 

In This Article

Specific Settings and Populations

Pregnancy

Preconception Counseling and Care. To minimize risks associated with pregnancy and type 1 diabetes, preconception counseling and care are critical. Preconception care with tight glycemic control improves outcomes including lower cesarean rates,[88] decreased perinatal mortality,[89–91] and decreased congenital malformations.[89–97] Although there is some evidence that childbearing may be reduced,[98–100] in general, fertility should be assumed to be normal, and all young women with type 1 diabetes should receive preconception counseling covering diabetes and general topics, including use of prenatal vitamin, discontinuation of potentially teratogenic medications, and the importance of glycemic control to reduce the risk of congenital malformations.

Pregnancy. Type 1 diabetes affects approximately 0.1–0.2% of all pregnancies.[101] During pregnancy, there are substantial changes in maternal insulin sensitivity that may cause profound changes in insulin requirements. Whereas insulin resistance increases markedly during the second and third trimesters, a greater proportion of total daily insulin dose must be given prandially and a lower proportion used to cover basal metabolic requirements.[102] Pregnant women with type 1 diabetes require meticulous glycemic management by experts trained in obstetrics, endocrinology, and maternal-fetal medicine. Women who are planning pregnancy or who are pregnant may need to test blood glucose levels frequently (often 10 or more times daily) to reach and maintain a near-normal A1C level without excessive hypoglycemia.

Severe hypoglycemia may occur early during pregnancy.[102] This is followed by periods of insulin resistance and subsequent hyperglycemia if the increased insulin needs are not met. Therefore, health care providers must be vigilant and frequently adjust insulin dosing throughout gestation.

In a pregnancy complicated by diabetes and chronic hypertension, target blood pressure goals of systolic blood pressure 110–129 mmHg and diastolic blood pressure 65–79 mmHg are reasonable. Lower blood pressure levels may be associated with impaired fetal growth (Table 8). ACE inhibitors and angiotensin receptor blockers are contraindicated during pregnancy because they may have adverse effects on the fetus. Antihypertensive drugs known to be effective and safe in pregnancy include methyldopa, labetalol, diltiazem, clonidine, and prazosin.

Eye examinations should occur in the first trimester with close follow-up throughout pregnancy and for 1 year postpartum because of the risk of rapid retinopathy progression during pregnancy. Those with progressive retinopathy should have more frequent screening by an ophthalmologist experienced in retinopathy management. See the American Diabetes Association/JDRF Type 1 Diabetes Sourcebook[70] for a summary of pregnancy recommendations. The prevalence of Hashimoto thyroiditis may be as high as 31% in women with type 1 diabetes.[105] Therefore, all pregnant women with type 1 diabetes should be screened for thyroid disease early in pregnancy.

Recommendations.

  • Starting at puberty, preconception counseling should be incorporated into routine diabetes clinic visits for all adolescents and women of childbearing potential, and appropriate birth control techniques should be discussed with women who do not desire pregnancy. (C)

  • As most pregnancies are unplanned, consider the potential risks and benefits of medications that are contraindicated in pregnancy in all adolescents and women of childbearing potential and counsel women using such medications accordingly. (E)

  • Such medications should be evaluated prior to conception, as drugs commonly used to treat diabetes and its complications may be contraindicated or not recommended in pregnancy, including statins, ACE inhibitors, angiotensin receptor blockers, and most noninsulin therapies. (B)

  • Prenatal vitamins with folate should be started with preconception planning to reduce the risk for birth defects. (B)

  • All pregnant women with type 1 diabetes should be screened for thyroid disease early in pregnancy. (B)

  • Women contemplating pregnancy should be evaluated and, if indicated, treated for diabetic retinopathy, nephropathy, neuropathy, and CVD. (B)

  • A1C levels should be as close to normal as possible (<7%) before conception is attempted. (B)

  • Nutritional intake should be optimized and included in preconception planning according to general pregnancy guidelines. (E)

Inpatient Management and Outpatient Procedures

Management of individuals with type 1 diabetes in the hospital and in preparation for scheduled outpatient procedures often differs from that of individuals with type 2 diabetes. The challenges include difficulties associated with fasting, maintaining a consistent source of carbohydrate, and facilitating inpatient blood glucose management while modifying scheduled insulin therapy. Outpatient procedures should be performed with the awareness that individuals with type 1 diabetes may have difficulty fasting for long periods of time (more than 10 h) prior to a procedure. Patients with type 1 diabetes should be prepared with a treatment plan for insulin dose adjustments and oral glucose intake prior to any procedure that requires alterations in dietary intake and/or fasting.

It is imperative that the entire health care team, including anesthesiologists and surgeons as well as other specialists who perform procedures, understands type 1 diabetes and how it factors into the comprehensive delivery of care. From a practical perspective, this means that people with type 1 diabetes will be at high risk for hypoglycemia during prolonged fasting and are at risk for ketosis if insulin is inappropriately withheld. Once under anesthesia, individuals with type 1 diabetes must be carefully monitored for hypoglycemia and hyperglycemia.

For some individuals, once the most acute phase of an illness has resolved or improved, patients may be able to self-administer their prior multiple-dose or CSII insulin regimen under the guidance of hospital personnel who are knowledgeable in glycemic management. Individuals managed with insulin pumps and/or multiple-dose regimens with carbohydrate counting and correction dosing may be allowed to manage their own diabetes if this is what they desire, once they are capable of doing so.

Recommendations.

  • All patients admitted to the hospital should have type 1 diabetes clearly identified in the medical record. (E)

  • SMBG should be ordered to fit the patient's usual insulin regimen with modifications as needed based on clinical status. (E)

  • Goals for blood glucose levels are the same as for people with type 2 diabetes or hospital-related hyperglycemia. (E)

  • A plan for preventing and treating hypoglycemia should be established for each patient. (E)

  • Insulin dosing adjustments should be made in the perioperative period and inpatient setting with consideration of changes in oral intake, recent blood glucose trends, and the need for uninterrupted basal insulin to prevent hyperglycemia and ketoacidosis, with adjustment of the long-acting insulin or basal insulin requirement to reflect true basal requirements, insofar as they may be anticipated. (B)

Child Care and Schools

Because a large portion of a child's day may be spent in school and/or in the child care setting, close communication with and cooperation of the school or day care personnel is essential for optimal diabetes management, safety, and maximal academic opportunities. Child care personnel and school staff should receive training to provide diabetes care in the absence of a school nurse or licensed health care professional. Able and willing school staff members should be taught the principles of diabetes management and trained to provide needed care for the child according to the ADA's Safe at School program (see the ADA position statement on diabetes care in the school and day care setting[106] for further discussion). Young children often lack the motor, cognitive, and communication skills and abilities to manage their diabetes and completely depend on adult caregivers. The management priority for younger children is the prevention, recognition, and treatment of hypoglycemia and marked hyperglycemia.

Students with diabetes should receive proper diabetes management in school, with as little disruption to the school and child's routine as possible. Whenever possible, the student should have the opportunity to self-manage by performing blood glucose monitoring, using CGM (if utilized), administering insulin, having access to meals/snacks, managing hypoglycemia (with trained personnel prepared to provide glucagon treatment, if required) and hyperglycemia, and participating fully in all school-sponsored activities (Table 9).

Camps

A diabetes camp is an ideal place for children and youth to have an enjoyable camp experience and receive peer support from other children with diabetes under close medical oversight. The goals for campers are to learn to cope more effectively with diabetes, learn self-management skills to gain more independence, and share experiences with other young people with diabetes.

The camp medical director is responsible for the diabetes management of the children. A registered dietitian oversees dietary planning at camp. Medical directors and staff should have expertise in managing type 1 diabetes and must receive training concerning routine diabetes management and treatment of diabetes-related emergencies at camp. Staff must follow universal precautions including Occupational Safety and Health Administration (OSHA) regulations, Clinical Laboratory Improvement Amendments (CLIA) standards, and state regulations.[107]

Diabetes in the Workplace

There are practical and legal issues related to diabetes in the workplace. Employers and employees with diabetes should work together to find solutions and educate themselves about the rights of individuals with diabetes. Individuals with diabetes are responsible for having all necessary diabetes supplies, eating properly, and being aware of safety issues and regulations at work. The Americans with Disabilities Act states that most employers must provide "reasonable accommodations" to allow an individual with diabetes to safely and successfully perform a job, unless doing so would place an "undue burden" on the employer. We refer the reader to ADA position statement on diabetes and employment for additional information[108] and to the relevant section of the American Diabetes Association/JDRF Type 1 Diabetes Sourcebook.[70]

Older Adults

Older individuals with type 1 diabetes are unique in that they have lived for many years with a complex disease. Not all older adults are alike: some may continue a rigorous regimen, with tighter control, while others may require less stringent targets. Along with age-related conditions, older adults may develop diabetes-related complications, which make managing type 1 diabetes more challenging. Providers should be aware that insulin dosing errors, meal planning, and physical activities must be properly managed in older adults. Severe hyperglycemia can lead to symptoms of dehydration and hyperglycemic crises. While chronic hyperglycemia is detrimental, hypoglycemia may be more of a concern in some older adults. Declining cognition may contribute to hypoglycemia unawareness or the inability to safely manage hypoglycemia when it occurs. An individualized approach that includes the reassessment of prior targets may be warranted. We refer the reader to the ADA consensus report "Diabetes in Older Adults".[54] Even though this report focuses primarily on the type 2 diabetic population, there is significant overlap in the comorbidities and complications experienced by the older type 1 and type 2 diabetic populations.

Special Population Groups

Although type 1 diabetes is increasing in several ethnic and racial groups, it remains less common in people of non-European descent. A better understanding of the unique pathophysiology of type 1 diabetes is needed. In addition, multidisciplinary diabetes teams should receive training to properly address the diverse cultural needs of these populations and to optimize health care delivery, improve glycemic control, and prevent complications. Additionally, there is a need for approaches to reduce health disparities and improve outcomes in racial/ethnic minorities and in the underserved population with type 1 diabetes.[70]

Developing Countries: The Global Epidemic

Type 1 diabetes is an increasing global public health burden. The demands of daily management, chronicity of the disease, potential complications, paucity of diabetes specialists, and rising incidence are challenging in the U.S., but these issues, including the considerable cost of management, are crippling for those in the developing world. International organizations play a major role in improving care for individuals with type 1 diabetes in the developing world, but implementable, cost-saving, and sustainable strategies are needed to make such programs successful.[70]

processing....