Noninvasive Optical Characterization of Muscle Blood Flow, Oxygenation, and Metabolism in Women With Fibromyalgia

Yu Shang; Katelyn Gurley; Brock Symons; Douglas Long; Ratchakrit Srikuea; Leslie J Crofford; Charlotte A Peterson; Guoqiang Yu


Arthritis Res Ther. 2012;14(6) 

In This Article


We explored the application of a novel NIRS/DCS technique to simultaneously evaluate the responses of muscle blood flow, blood oxygenation and oxygen metabolism in subjects with FM and well-matched healthy controls during fatiguing exercise and muscle ischemic challenge. We found that FM resulted in less oxygen extraction in muscle during fatiguing exercise as well as longer oxygenation recovery following exercise and muscle ischemia. The results suggest an alteration of muscle oxygen utilization, which is possibly due to the altered mitochondrial function and/or lactate accumulation in the FM population. These findings verify our hypothesis that FM affects muscle hemodynamic/metabolic responses to fatiguing exercise and ischemic challenge, which can be noninvasively detected by the hybrid optical instrument. Notice that these conclusions are based on the data from relatively small samples (14 FMs and 23 healthy controls). A large subject pool would increase the statistical power of our measurement results. Combination of NIRS and DCS provides a unique tool to comprehensively evaluate tissue oxygen and flow kinetics in skeletal muscle.