Mobility Decline in Old Age

Merja Rantakokko; Minna Mänty; Taina Rantanen

Disclosures

Exerc Sport Sci Rev. 2013;41(1):19-25. 

In This Article

Prevention of Mobility Decline

Many different types of physical activity programs, ranging from simple home exercise programs to intensive highly supervised hospital- or center-based programs, have been used to improve mobility in older people. Although physical activity and exercise are promoted widely as effective means to enhance physical functioning among older people, it is less certain how these promising results can be adapted for use in everyday clinical practice. Physical activity counseling, where the participant is encouraged to exercise and provided with advice about possibilities to exercise, is one example of a low-cost educational intervention to promote physical activity.[10] As many older adults use health care services regularly, physical activity counseling in primary health care settings may be an effective means of increasing physical activity and further slowing down the age-related deterioration in mobility. A randomized controlled trial of the effects of physical activity counseling on physical activity and mobility was performed in our study center from 2003 to 2006. The study protocol is described in detail elsewhere.[10] Briefly, the participants were people aged 75 to 81 yr. The intervention included a single individual physical activity counseling session followed up with telephone contacts every 4 months for 2 yr. Data were collected in the laboratory at baseline and after 2 yr. During the intervention, intermediate changes were assessed by means of semiannual telephone interviews. In addition, postintervention telephone interviews were conducted semiannually for 1.5 yr. Thus, the total follow-up time was 3.5 yr.

During the intervention, the proportion of participants reporting difficulties in advanced (walking 2 km) and basic mobility (walking 0.5 km) increased in the intervention and control groups but significantly less in the intervention group (Fig. 4).[13] At the end of the 2-yr intervention, the treatment effect on walking 2 km was significant (odds ratio (OR), 0.84; 95% confidence interval (CI), 0.70–0.99), and the effect on walking 0.5 km was parallel but nonsignificant (OR, 0.87; 95% CI, 0.69–1.09). The positive effect of the intervention mainly was caused by the prevention of walking difficulty, rather than recovery from walking difficulty. For advanced mobility, the treatment effect remained significant (OR, 0.82; 95% CI, 0.68–0.99) at the postintervention 1.5-yr follow-up, whereas for basic mobility, the effect gradually disappeared (OR, 1.09; 95% CI, 0.87–1.37). At the 2-yr follow-up point, the number needed to treat for walking 2 km was 15. This indicates that to prevent one people from developing difficulty or to recover from baseline difficulty, 15 people had to receive counseling.[13]

Figure 4.

Proportion of participants with difficulty in advanced and basic mobility at semiannual follow-up points during the counseling intervention and 1.5 yr postintervention follow-up. The P indicates the statistical significance of the treatment effects (group × time interaction) observed in the generalized estimating equation models. (Reprinted from [13]. Copyright © 2009 Oxford University Press. Used with permission.)

Comments

3090D553-9492-4563-8681-AD288FA52ACE

processing....