CRP Gene Variation Affects Early Development of Alzheimer's Disease-related Plaques

Eloise Helena Kok; Mervi Alanne-Kinnunen; Karita Isotalo; Teemu Luoto; Satu Haikonen; Sirkka Goebeler; Markus Perola; Mikko A Hurme; Hannu Haapasalo; Pekka J Karhunen


J Neuroinflammation. 2011;8(96) 

In This Article


The mechanisms underlying AD have been sought for more than 100 years, with not more than a few risk factors being identified, and the development of therapeutics has been based on treating symptoms, rather than reversing or curing the disease. Increasing population and average lifespan will see the number of AD sufferers escalate, according to current estimates, which will stress healthcare and treatment services.

Common understanding relates SP (aggregations of amyloid-β (Aβ) protein) and NFT (accumulations of hyperphosphorylated tau protein) in the brains of AD subjects as causes of the disease, with both triggering inflammation and disrupting neuronal signalling, and SP also implicated in genetic mutations of familial AD.[3] Our recently published study[28] on the prevalence of these brain lesions suggests that they are much more frequent, and occur in younger individuals, than previously thought, although whether the disease process also begins earlier is yet to be ascertained.

The inflammation theory was developed after epidemiological studies revealed a 6-times smaller incidence of AD in a cohort of patients receiving NSAIDs for rheumatoid arthritis, compared to a control group.[10,33] Whilst the effectiveness of NSAIDs is controversial in the treatment of AD,[33] there is still a common consensus that inflammation is an important part of the AD process.

CRP is an acute phase inflammatory marker found in plasma. CRP levels have been shown to be upregulated in affected areas of AD brains.[20] Polymorphisms in the CRP gene associated with elevated CRP levels have been shown to increase mortality.[22] Research has implicated genetic factors as determining 27–40% of variance in plasma CRP levels.[24,25]

A relationship between CRP genotype and NFT was not seen in our cohort, as was also the case in our earlier study of APOE genotype.[28] NFT formation is presumed to be secondary to SP production;[34] thus the lack of an association with CRP genotypes and NFT and the idea that CRP polymorphisms would be related only to SP is consistent.

The findings of our current work that some high-CRP level polymorphisms correlate with early non-neuritic SP allows us to hypothesise that increased inflammatory levels may initiate or participate in the primary development of lesions, which then leads to other processes and damage to neurons, thus setting off a chain of events leading to AD. The absence of statistically significant associations between CRP genotypes and late-stage neuritic SP could be due to other factors acting upon SP development, such as effects of immune cells, including microglia.[35,36]

SNP rs2794521 has been previously reported to affect expression levels of CRP, with the T allele increasing transcription levels of the protein[24,25] compared to the C allele. In our cohort, this was the only SNP that associated with the occurrence of SP, with the most common CT genotype showing borderline significance for an association with reduced risk of having at least one SP (p = 0.067). When we further analysed the associations, taking into account early or late SP phenotype, we found that CRP SNP rs2794521 (C carriers) was significantly associated with reduced risk of harbouring non-neuritic SP. It may be possible that the CT genotype associates with lower levels of CRP, thus interfering with formation of SP. In contrast, high-CRP level SNPs (rs3091244, TA carriers and rs3093075 CA carriers) were strongly associated with increased risk of non-neuritic SP. However as a sign of the complex relationship between SNPs and CRP levels, we found that other high-CRP level SNPs, rs1130864 (TT carriers) and rs1205 (CC carriers), also showed trends toward protection against non-neuritic SP compared to no SP. These results nonetheless suggest a role for the CRP gene, independent of APOE genotype, which was used as a covariate in these analyses.

The CCGCC haplotype contains the protective, low-CRP protein-linked C allele for both rs2794521 and rs3091244, whilst TAGCC has the high-CRP level T and A alleles for the same SNPs. The effects of these SNPs were corroborated in haplotype analyses showing that CCGCC carriership reduces risk and TAGCC carriership increases risk for non-neuritic SP, with tendencies in the same directions for neuritic SP compared to no SP. Our results, showing a correlation between CRP and Aβ IHC staining, support the involvement of inflammation in AD and correspond with other studies.[20]

In line with previous reports and with our results above, the high-CRP SNP rs3091244 (TT genotype) was significantly associated with CRP IHC staining in the CA1/2 region. In contrast, the previously reported high-CRP level TT genotype of rs1130864 was significantly associated with positive staining, although our SP results would suggest it has some protective effect in non-neuritic SP formation. This could suggest that this SNP may confer more effective clean-up abilities, and that higher levels, in this case, are not detrimental.

The absence of an association between Aβ staining and CRP genotype could be explained if CRP affects only SP formation and not the presence of the Aβ peptide itself, which is the product of normal amyloid precursor protein processing.[37] This makes sense, given the revealed associations between CRP genotypes and SP types in our study.

As the majority of the TASTY series are non-AD cases, correlative findings between CRP genotypes and SP prevalence reveal an interesting insight into the early development of AD neuropathology. It is possible that these SP-positive cases could be in a prodromal phase of the disease and may later have developed AD, had they lived. We recently showed, however, that 31% of the subjects in this series harbour SP, and that this prevalence increased to almost 100% in the oldest old. This questions the relevance of SP prevalence and the relationship between these brain lesions and AD itself.

Our data suggest that CRP genotype may modify initial SP formation in the brain. This is an interesting finding that will need to be investigated further in cohorts comprising only of AD cases, and replicated in larger epidemiological studies. It may be that CRP polymorphisms associate with or participate in the slowing down or enhancement of early stage SP but, after this, other factors come into play to effect conversion to late-stage SP. As end-stage SP are more likely to be associated with dementia than other types,[34] this could explain why NSAID treatments in clinical AD patients have proven ineffective at slowing or reversing the disease, as inflammation may already have played its part. Based on our studies and others' results, the brains of most middle-aged to elderly persons possess some degree of persistent inflammation as well as SP and NFT. It could therefore be assumed that other factors aside from CRP genotype participate in the conversion of these 'benign' SP, to pathological SP types related to AD.

Whilst it may be that the younger aged cases and consequential low numbers of SP may reduce power, and may have caused some of our results to represent false positives, our cohort is a large autopsy series, showing the prevalence of these brain lesions in a sample representative of a general non-institutionalised population.


Comments on Medscape are moderated and should be professional in tone and on topic. You must declare any conflicts of interest related to your comments and responses. Please see our Commenting Guide for further information. We reserve the right to remove posts at our sole discretion.