Cancer as a Metabolic Disease

Thomas N Seyfried; Laura M Shelton

Disclosures

Nutr Metab. 2010;7:7 

In This Article

Conclusions

Evidence is reviewed supporting a general hypothesis that cancer is primarily a disease of energy metabolism. All of the major hallmarks of the disease can be linked to impaired mitochondrial function. In order to maintain viability, tumor cells gradually transition to substrate level phosphorylation using glucose and glutamine as energy substrates. While cancer causing germline mutations are rare, the abundance of somatic genomic abnormalities found in the majority of cancers can arise as a secondary consequence of mitochondrial dysfunction. Once established, somatic genomic instability can contribute to further mitochondrial defects and to the metabolic inflexibility of the tumor cells. Systemic metastasis is the predicted outcome following protracted mitochondrial damage to cells of myeloid origin. Tumor cells of myeloid origin would naturally embody the capacity to exit and enter tissues. Two major conclusions emerge from the hypothesis; first that many cancers can regress if energy intake is restricted and, second, that many cancers can be prevented if energy intake is restricted. Consequently, energy restricted diets combined with drugs targeting glucose and glutamine can provide a rational strategy for the longer-term management and prevention of most cancers.

Comments

3090D553-9492-4563-8681-AD288FA52ACE

processing....