Progression Models in Resistance Training for Healthy Adults

Nicholas A. Ratamess, Ph.D.; Brent A. Alvar, Ph.D.; Tammy K. Evetoch, Ph.D., FACSM; Terry J. Housh, Ph.D., FACSM (Chair); W. Ben Kibler, M.D., FACSM; William J. Kraemer, Ph.D., FACSM; N. Travis Triplett, Ph.D.


March 01, 2010

In This Article

Abstract and Introduction


In order to stimulate further adaptation toward specific training goals, progressive resistance training (RT) protocols are necessary. The optimal characteristics of strength-specific programs include the use of concentric (CON), eccentric (ECC), and isometric muscle actions and the performance of bilateral and unilateral single- and multiple-joint exercises. In addition, it is recommended that strength programs sequence exercises to optimize the preservation of exercise intensity (large before small muscle group exercises, multiple-joint exercises before single-joint exercises, and higher-intensity before lower-intensity exercises). For novice (untrained individuals with no RT experience or who have not trained for several years) training, it is recommended that loads correspond to a repetition range of an 8-12 repetition maximum (RM). For intermediate (individuals with approximately 6 months of consistent RT experience) to advanced (individuals with years of RT experience) training, it is recommended that individuals use a wider loading range from 1 to 12 RM in a periodized fashion with eventual emphasis on heavy loading (1-6 RM) using 3- to 5-min rest periods between sets performed at a moderate contraction velocity (1-2 s CON; 1-2 s ECC). When training at a specific RM load, it is recommended that 2-10% increase in load be applied when the individual can perform the current workload for one to two repetitions over the desired number. The recommendation for training frequency is 2-3 d·wk−1 for novice training, 3-4 d·wk−1 for intermediate training, and 4-5 d·wk−1 for advanced training. Similar program designs are recommended for hypertrophy training with respect to exercise selection and frequency. For loading, it is recommended that loads corresponding to 1-12 RM be used in periodized fashion with emphasis on the 6-12 RM zone using 1- to 2-min rest periods between sets at a moderate velocity. Higher volume, multiple-set programs are recommended for maximizing hypertrophy. Progression in power training entails two general loading strategies: 1) strength training and 2) use of light loads (0-60% of 1 RM for lower body exercises; 30-60% of 1 RM for upper body exercises) performed at a fast contraction velocity with 3-5 min of rest between sets for multiple sets per exercise (three to five sets). It is also recommended that emphasis be placed on multiple-joint exercises especially those involving the total body. For local muscular endurance training, it is recommended that light to moderate loads (40-60% of 1 RM) be performed for high repetitions (>15) using short rest periods (< 90 s). In the interpretation of this position stand as with prior ones, recommendations should be applied in context and should be contingent upon an individual's target goals, physical capacity, and training status.


The current document replaces the American College of Sports Medicine (ACSM) 2002 Position Stand entitled "Progression Models in Resistance Training for Healthy Adults".[8] The 2002 ACSM Position Stand extended the resistance training (RT) guidelines initially established by the ACSM in the position stand entitled "The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in Healthy Adults",[7] which suggested the minimal standard of one set of 8-12 repetitions for 8-10 exercises, including one exercise for all major muscle groups, and 10-15 repetitions for older and more frail persons. The 2002 Position Stand[8] provided a framework for superior training prescription guidelines relative to the need for progression in healthy (without disease or orthopedic limitations) novice, intermediate, and advanced trainees. Specifically, these guidelines effectively distinguished numerous modifications to the original guidelines to accommodate individuals seeking muscular development beyond that of minimal general health and fitness. Since 2002, numerous studies have been published examining one or more RT variable(s) to support the progressive adaptation in muscular strength and performance. These studies have identified other mechanisms of physiological adaptations and have served to bolster the scientific integrity of the RT knowledge base. As with all position stands, interpretation of these revised recommendations should be applied in context and should be contingent upon an individual's goals, physical capacity, and training status.

Progression in RT may be defined as "the act of moving forward or advancing toward a specific goal over time until the target goal has been achieved," whereas maintenance RT refers to programs designed to maintain the current level of muscular fitness.[8] Although it is impossible to improve at the same rate over long-term periods (e.g., >6 months), the proper manipulation of program variables (choice of resistance, exercise selection and order, number of sets and repetitions, frequency, and rest period length) can limit training plateaus and increase the ability to achieve a higher level of muscular fitness. Trainable characteristics include muscular strength, power, hypertrophy, and local muscular endurance (LME). Variables such as speed and agility, balance, coordination, jumping ability, flexibility, and other measures of motor performance may be enhanced by RT. RT, when incorporated into a comprehensive fitness program, improves cardiovascular function,[72] reduces the risk factors associated with coronary heart disease[89,130] and non-insulin-dependent diabetes,[184] prevents osteoporosis,[163] may reduce the risk of colon cancer,[146] promotes weight loss and maintenance,[61] improves dynamic stability and preserves functional capacity,[61] and fosters psychological well-being.[62]

This position stand presents evidence-based guidelines using The National Heart, Lung, and Blood Institute[194] criteria shown in Table 1. Each recommendation is given a grade of A, B, C, or D based on the quantity and quality of evidence.