Concentrations of the Sunscreen Agent Benzophenone-3 in Residents of the United States: National Health and Nutrition Examination Survey 2003-2004

Antonia M. Calafat; Lee-Yang Wong; Xiaoyun Ye; John A. Reidy; Larry L. Needham


Environ Health Perspect. 2008;116(7):893-897. 

In This Article


The detection of BP-3 in almost all samples suggests that exposure to BP-3 was widespread in the U.S. general population during 2003-2004. This high level of detection most likely resulted from routine use of consumer products that contain BP-3, such as sunscreen, skin care lotion, lipstick, and hair spray (National Library of Medicine 2007). The wide range of urinary concentrations—10% of participants had BP-3 concentrations < 2.3 μg/g creatinine and 5% had concentrations > 1,070 μg/g creatinine ( Table 1 )—may be related to lifestyle differences that result in exposure differences and to individual variations in bioavailability, distribution kinetics, or metabolism of BP-3.

The frequent detection of BP-3 and the magnitude and range of urinary concentrations in NHANES 2003-2004 are comparable with data from two smaller studies in the United States. In 30 anonymous adult volunteers with no documented BP-3 exposure, we detected BP-3 in 90% of samples, and total urinary concentration (free plus conjugates) of BP-3 ranged from the LOD (0.5 μg/L) to 3,000 μg/L (Ye et al. 2005b). In a pilot study of 90 prepubertal girls from New York City, New York; Cincinnati, Ohio; and Northern California, we detected BP-3 in 86% of samples (Wolff et al. 2007). The creatinine-adjusted geometric mean concentration of BP-3 (30.8 μg/g) for these girls was similar to that for NHANES 2003-2004 children 6-11 years of age (25.8 μg/g creatinine).

The relation between age and LSGM BP-3 concentrations differed by race/ethnicity (Figure 1). These differences most likely result from increased use of sunscreen or other personal-care products containing BP-3 by people with light skin pigmentation. For instance, sunscreen use among non-Hispanic whites is reportedly higher than for non-Hispanic blacks and other race/ethnic groups of outdoor workers and the general population (Briley et al. 2007; Pichon et al. 2005). Likewise, differences by age might reflect differences in use of personal-care products that contain BP-3. Non-Hispanic white parents may apply sunscreen regularly to protect their young children from sunburn, whereas teenagers might not apply sunscreen as often (Jones and Saraiya 2006; Livingston et al. 2007). Non-Hispanic white adults in their twenties and forties might be more preoccupied about their skin appearance than non-Hispanic whites in their thirties (who may devote more time to work and family responsibilities than to themselves) or people in their fifties (who may see little benefit in applying sunscreen at older ages).

We found differences by sex in the adjusted LSGM concentrations of BP-3. Compared with males, females tend to use more sunscreen (Eide and Weinstock 2006; Hall et al. 1997; Jones and Saraiya 2006) and other personal-care products that may contain BP-3. Therefore, higher concentrations of BP-3 for females than for males most likely result from their higher exposure to BP-3.

Females and non-Hispanic whites not only had significantly higher LSGM concentrations than did males and non-Hispanic blacks, respectively, but also were more likely to exhibit concentrations of BP-3 above the 95th percentile. In particular, females were 3.5 times more likely than males, and non-Hispanic whites were 6.8 times more likely than non-Hispanic blacks to have BP-3 concentrations above the 95th percentile. Mexican Americans were about four times more likely than non-Hispanic blacks to present BP-3 concentrations above the 95th percentile. Although young children had LSGM concentrations of BP-3 comparable with those of adults in their twenties and forties, age was not significantly associated with having concentrations above the 95th percentile. Our data suggest that females and non-Hispanic whites represent two segments of the general population with higher exposures to BP-3 compared with other demographic groups.

Protection against sunburn and squamous cell carcinoma by application of sunscreens is important, even though the use of sunscreen may not protect against melanoma, the deadliest form of skin cancer (Lin and Fisher 2007). Sun protection is critical for outdoor workers, who are at higher risk for squamous cell carcinoma than other population groups (Pichon et al. 2005), and in situations where sun exposure, even during peak times, is unavoidable. In other situations, although behavioral measures, such as wearing a hat, sunglasses, and sun protective clothes and avoiding the sun during peak exposure times, can reduce the risk for skin damage, sunscreens may be the primary means of sun protection, especially in societies that value outdoor activities (Lautenschlager et al. 2007). Toxicologic and epidemiologic data on BP-3, one of these sunscreens, are lacking. Nevertheless, the NHANES 2003-2004 data demonstrating Americans' exposure to BP-3 can be used to establish a nationally representative baseline assessment of exposure to this sunscreen agent and may promote the use of biomonitoring to complement the questionnaire or survey information in studies designed to evaluate sun-safety practices. These NHANES 2003-2004 data could also be of benefit in a risk assessment for BP-3 if indicated by toxicologic or epidemiologic studies.


Comments on Medscape are moderated and should be professional in tone and on topic. You must declare any conflicts of interest related to your comments and responses. Please see our Commenting Guide for further information. We reserve the right to remove posts at our sole discretion.