Carbon Monoxide--Related Deaths--United States, 1999-2004

M King, PhD; C Bailey, MS


Morbidity and Mortality Weekly Report. 2007;56(50):1309-1312. 

In This Article

Editorial Note

Consistent with previous studies,[1,2] the results of this analysis indicate that men and adults aged ≥65 years were more likely to die from CO poisoning than other persons. The higher rate in men has been attributed to high-risk behaviors among men, such as working with fuel-burning tools or appliances. The higher rate among older persons has been attributed to the likelihood of older adults mistaking symptoms of CO poisoning for other conditions common among persons in this age group (e.g., influenza-like illnesses or fatigue. CO deaths were highest during colder months, likely because of increased use of gas-powered furnaces and use of alternative heating and power sources used during power outages, such as portable generators, charcoal briquettes, and propane stoves or grills.[1] Similar to previous findings,[2] the highest CO death rates tended to be among western (e.g., Alaska, Montana, and Wyoming) and midwestern (e.g., Nebraska and North Dakota) states, likely because of variations in weather and geography and state-by-state variations in prevalence of certain risk behaviors.

The findings in this report are subject to at least three limitations. First, carboxyhemoglobin measurements are not a routine part of autopsies, and postmortem measurements often are unreliable because carboxyhemoglobin concentrations produced by different analytic methods vary,[8] which might have resulted in misclassification of CO-related deaths. In addition, receipt of mortality data often is delayed, and the data might lack the circumstantial and clinical detail that could provide information about the specific mechanisms of CO poisoning, which might have resulted in misclassification. Second, because the symptoms of CO poisoning are nonspecific and clinical recognition is challenging, certain cases might not be recognized, resulting in underestimates. Finally, because ICD-10 coding has only one code specific to CO (T58), distinguishing between deaths caused by motor-vehicle exhaust and other CO-related deaths is not possible using the methods in this analysis.

Because persons are relying on CO alarms to prevent CO poisoning,[9] additional research regarding their effectiveness is needed, including an evaluation of the cost effectiveness of CO alarms used in residences. As additional years of data become available, tracking of longitudinal trends in CO-related mortality should continue to guide public health measures aimed at preventing deaths from CO poisoning.[10]

Exposure to CO can be prevented with basic precautions, including proper installation and maintenance of fuel-burning appliances (see "Guidelines to Prevent Carbon Monoxide (CO) Exposure"). CO detectors can alert occupants to accumulating gas and should be placed on every level of a home. Additional measures to educate the public regarding the dangers of CO are needed, particularly during the winter season. Additional surveillance that combines timely estimates of morbidity and mortality with situational information related to mechanisms of CO exposure (e.g., length of exposure, type of fuel-burning device involved, and behaviors or chain of events preceding exposure) could help target prevention measures and reduce CO poisonings.


Comments on Medscape are moderated and should be professional in tone and on topic. You must declare any conflicts of interest related to your comments and responses. Please see our Commenting Guide for further information. We reserve the right to remove posts at our sole discretion.
Post as: