The Effect of Gender, Age, and Geographical Location on the Incidence and Prevalence of Renal Replacement Therapy in Wales

Hugo C van Woerden; * Jane Wilkinson; Martin Heaven; Jason Merrifield


BMC Nephrology 

In This Article

Abstract and Background


Background This study used a cross sectional survey to examine the effect of gender, age, and geographical location on the population prevalence of renal replacement therapy (RRT) provision in Wales.
Methods Physicians in renal centres in Wales and in adjacent areas of England were asked to undertake a census of patients on renal replacement therapy on 30 June 2004 using an agreed protocol. Data were collated and analysed in anonymous form.
Results 2434 patients were on RRT in Wales at the census date. Median age of patients on RRT was 56 years, peritoneal dialysis 58 years, haemodialysis 66 years and transplantation 50 years. The three treatment modalities had significantly different age-specific peak prevalence rates and distributions. RRT age-specific prevalence rates peaked at around 70 years (1790 pmp), transplantation at around 60 years (924 pmp), haemodialysis at around 80 years (1080 pmp) and peritoneal dialysis did not have a clear peak prevalence rate. Age-specific incidence of RRT peaked at a rate of 488 pmp at 79 years, as did incidence rates for haemodialysis, which peaked at the same age. Age had less effect on the initiation of peritoneal dialysis, which had a broad plateau between the early fifties and late seventies. Kidney transplantation rates were highest in the early fifties but were markedly absent in old age.
Conclusion Differences in the provision of RRT are evident, particularly in the very elderly, where the gender difference for haemodialysis is particularly marked. The study illustrates that grouping patients over 75 years into a single age-band may mask significant diversity within this age group. Significant numbers of very elderly patients who are currently not receiving RRT may wish to receive RRT as the elderly population increases, and as technology improves survival and quality of life on RRT.
The study suggests that if technologies that are more effective were developed, and which had a lower impact on quality of life, there might be up to a 17% increase in demand for RRT in those aged over 75 years; around 90% of this increased demand would be for haemodialysis.


Since the introduction of renal replacement therapy (RRT) in the UK in 1946,[1] its use has risen steadily. As survival has improved, there has been an increasing willingness to offer dialysis to a wider range of patients including older patients. This has resulted in rising annual incidence (acceptance) and prevalence rates. In the 1960s, dialysis was rarely offered to patients over 65 years[2]. The acceptance rate for RRT has steadily risen from around 22 per million population (pmp)[3] in the UK population in 1982, to 133 pmp in Wales in 2003.[4] The prevalence rate has also risen, in England and Wales, from around 393 pmp[5] in 1993 to over 700 pmp[4] in 2003. The continuing rise in demand for RRT has imposed a huge strain on resources in renal services.[6] There have been recurrent demands for yet more investment[7] and some surprise that demand has not reached a plateau. Geographical boundaries in Wales have changed and there was concern to ensure that further investment addressed, rather than increased, inequalities in gender, age and geographical location. Some concern had also been expressed regarding the reliability and independence of available data. This study attempted to address and explain some of the issues behind the ongoing requirement for further investment.

A number of factors underlie the rising demand in RRT. Technological advances have encouraged the offering of RRT to older patients with greater co-morbidity. Technological advances have also improved survival, increasing the incidence and prevalence of patients on RRT. A rapidly aging population, has, and will increasingly, exacerbate the effect of the above factors, as population predictions suggest that the number of people aged over 60 years will rise by around 65 per cent over the next 50 years. Similarly, the number of people aged over 75 years is expected to double, and the number of people aged 90 years and over is expected to more than triple.[8]

Separate analysis of data on RRT prevalence or incidence in the very elderly has historically been scarce and the use of summary measures of RRT, encompassing wide age bands, may also have obscured the underlying shifts in the numerators and denominators in the elderly. This study has consequently used age-specific rates, which have a number of advantages over age-standardised rates as they are unaffected by differences in demography.[9] This allows the separating out of age related factors and factors associated with changes in the provision (demand and supply) of RRT. Age-standardised rates can only be compared with other age-standardised rates using the same age-standardised population. For example, age-standardised rates for the UK population cannot be compared with age-standardised rates for the European population or the North American population. In contrast, age specific rates can be compared between any two populations without being affected by different population pyramids in the different populations.[10,11]

Age-specific rates have advantages over age-standardised rates, particularly for the oldest age band in any analysis. For example, two identical age-standardised rates for individuals "over 75 years" could represent two very different populations. One population where all the population in this age-band were aged 75–80 years (i.e. had died by the age of 80 years) and another population where there were a large proportion of patients living on to 90–100 years and over. Detailed differences within the age-band "over 75 years" are very relevant to the cost of providing RRT, given the demographic shift occurring in the western world. The cost of a patient aged 100 years on RRT is likely to differ from the cost of treating a patient aged 75 years because of general frailty and co-morbidity.

A doubling of the number of patients on RRT over, say 80 years or over 90 years will have a major impact on service provision as these patients are frail and have multiple co-morbidities. However, because the very elderly make up only a small proportion of the population, such a rise in RRT would only result in a small rise in the overall age-standardised RRT rate for "the over 75 years". The additional workload for the service is consequently masked. The similar generation of age-specific rates in other countries or populations would facilitate debate on the emerging question as to the true level of unmet need for RRT in the ninth and tenth decades of life.

Other potential inequalities in RRT provision are also important to consider. This study has therefore examined the effect of gender, geographical location and modality of RRT on RRT prevalence rates. Insufficient numbers were available to assess the effect of these factors on incidence rates.


Comments on Medscape are moderated and should be professional in tone and on topic. You must declare any conflicts of interest related to your comments and responses. Please see our Commenting Guide for further information. We reserve the right to remove posts at our sole discretion.