The Human Gene Map for Performance and Health-Related Fitness Phenotypes: The 2005 Update

Tuomo Rankinen; Molly S. Bray; James M. Hagberg; Louis PéRusse; Stephen M. Roth; Bernd Wolfarth; Claude Bouchard

Disclosures

Med Sci Sports Exerc. 2006;38(11):1863-1888. 

In This Article

Abstract and Introduction

The current review presents the 2005 update of the human gene map for physical performance and health-related fitness phenotypes. It is based on peer-reviewed papers published by the end of 2005. The genes and markers with evidence of association or linkage with a performance or fitness phenotype in sedentary or active people, in adaptation to acute exercise, or for training-induced changes are positioned on the genetic map of all autosomes and the X chromosome. Negative studies are reviewed, but a gene or locus must be supported by at least one positive study before being inserted on the map. By the end of 2000, in the early version of the gene map, 29 loci were depicted. In contrast, the 2005 human gene map for physical performance and health-related phenotypes includes 165 autosomal gene entries and QTL, plus five others on the X chromosome. Moreover, there are 17 mitochondrial genes in which sequence variants have been shown to influence relevant fitness and performance phenotypes. Thus, the map is growing in complexity. Unfortunately, progress is slow in the field of genetics of fitness and performance, primarily because the number of laboratories and scientists focused on the role of genes and sequence variations in exercise-related traits continues to be quite limited.

This paper constitutes the sixth installment in the series on the human gene map for performance and health-related fitness phenotypes published in this journal. It covers the peer-reviewed literature published by the end of December 2005. The search for relevant publications is primarily based on the journals available in MEDLINE, the National Library of Medicine's publication database covering the fields of Life Sciences, biomedicine, and health, using a combination of key words (e.g., exercise, physical activity, performance, training, genetics, genotype, polymorphism, mutation, linkage). Other sources include personal reprint collections of the authors and documents made available to us by colleagues who are publishing in this field. The electronic prepublications, that is, articles that are made available on the Web site of a journal before being published in print, are not included in the current review. The goal of the human gene map for fitness and performance is to review all genetic loci and markers shown to be related to physical performance or health-related fitness phenotypes in at least one study. Negative studies are briefly reviewed for a balanced presentation of the evidence. However, the nonsignificant results are not incorporated in the summary tables.

The physical performance phenotypes for which genetic data are available include cardiorespiratory endurance, elite endurance athlete status, muscle strength, other muscle performance traits, and exercise intolerance of variable degrees. Consistent with the previous reviews, the phenotypes of health-related fitness retained are grouped under the following categories: hemodynamic traits including exercise heart rate, blood pressure and heart morphology; anthropometry and body composition; insulin and glucose metabolism; and blood lipid, lipoprotein, and hemostatic factors. Here, we are not concerned about the effects of specific genes on these phenotypes unless the focus is on exercise, exercise training, athletes, or active people compared against controls or inactive individuals, or exercise intolerance. This is particularly important for the genetic studies that have focused on body mass index, adiposity, fat-free mass, adipose tissue distribution, and various abdominal fat phenotypes. If there were no exercise-related issues in those studies, the papers are not considered here. However, the interested reader can obtain a full summary of these other studies in one of our complementary papers published every year in Obesity Research under the general theme of the status of the human obesity gene map. The interested reader may also consult the following electronic version of this other map (http://obesitygene.pbrc.edu ).

The studies incorporated in the review are fully referenced so that the interested reader can access the original papers. Of interest to some could be the early observations made on athletes, particularly Olympic athletes. The results of these case-control studies based on common red blood cell enzymes were essentially negative and are not reviewed in this edition of the map. The interested reader can consult the first installment of the gene map for a complete summary of these early reports.[164]

The 2005 synthesis of the human performance and health-related fitness gene map for the autosomes and the X chromosome is summarized in Figure 1. The 2005 update includes 26 additional gene entries and quantitative trait loci (QTL) compared with the 2004 version.[255] We have also depicted in Figure 2 the gene loci in the mitochondrial DNA in which sequence variants have been shown to be associated with fitness and performance phenotypes. Table 1 provides a list of all genes or loci, cytogenic locations, and conventional symbols used in this review.

The 2005 human performance and health-related fitness gene map. The map includes all gene entries and QTL that have shown associations or linkages with exercise-related phenotypes summarized in the article. The chromosomes and their regions are from the Gene Map of the Human Genome Web site hosted by the National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD (http://www.ncbi.nlm.nih.gov). The chromosome number and the size of each chromosome in megabases (Mb) are given at the top and bottom of the chromosomes, respectively. Loci abbreviations and full names are given in Table 1 .

Mitochondrial genes that have been shown to be associated with exercise intolerance, fitness, or performance-related phenotypes. The location of the specific sequence variants is defined in Table 3 and Table 14 . The mitochondrial DNA locations are from http://www.mitomap.org

It remains our collective goal to make this publication a useful resource for those who teach undergraduate and graduate students about the role of inheritance on fitness and performance traits and the impact of genetic variation on the health of human beings. It is also our hope that the yearly update of the fitness and performance gene map will be useful to exercise scientists and the sports medicine community.

Comments

3090D553-9492-4563-8681-AD288FA52ACE

processing....