Advances in Techniques for Endovenous Ablation of Truncal Veins

G. S. Munavalli, MD, MHS; R. A. Weiss, MD

Disclosures

Skin Therapy Letter. 2006;11(3):4-7. 

In This Article

Abstract and Introduction

Abstract

The latest techniques for endovenous occlusion, i.e., radiofrequency ablation catheters or endoluminal laser targeting water are our preferred methods for the treatment of saphenous-related varicose veins. Clinical experience with endovenous techniques in more than 1,000 patients shows a high degree of success with minimal side effects, most of which can be prevented or minimized with use of tumescent anesthesia. Within the next 5 years, these minimally invasive endovenous ablative procedures involving saphenous trunks should have virtually replaced open surgical strippings.

Introduction

Venous disease affects 40%-55% of the population; common symptoms include leg pain, swelling, and skin changes.[1,2] It encompasses a wide spectrum of clinical manifestations, from asymptomatic spider veins overlying the ankles, to bulging branches of the greater or great saphenous vein (GSV) extending across the anterior thigh, to leg swelling and chronic ulceration of the lower medial calf. Venous insufficiency, the most common form of venous disease,[2] occurs when a high-pressure leakage develops between the deep and superficial systems, or within the superficial system itself (e.g., within GSV, and the lesser or small saphenous vein (LSV), (Figure 1)), followed by sequential failure of the venous valves in the superficial veins. Venous blood escapes from its normal flow path and flows in a retrograde direction down into an already congested leg. Over time, incompetent truncal veins acquire the typical dilated and tortuous appearance of varicosities. Furthermore, insufficiency can lead to chronic morbidity in the form of ulcerative and edematous skin changes in the lower extremities.

Figure 1.

Distributions of the Greater (Great) and Lesser (Small) Saphenous Veins

Previous methods of treating saphenous vein reflux include vein stripping, ligation and division, echosclerotherapy, and valve replacement. Vein stripping has a failure rate as high as 60%, and has historically required general or spinal anesthesia. Recovery can often take 2-3 weeks. Similar to vein stripping, the reported incidence rate for GSV reflux following high ligation alone is significant, with up to 71% recurrence. Postulated reasons for this include under-recognized anomalous anatomic vascular patterns in the saphenous systems and neovascularization.

In 2002, the US FDA approved endovenous laser treatment as a minimally invasive method of ablating incompetent saphenous veins. This in-office procedure uses local anesthesia, thus eliminating the need for general or spinal anesthesia. Unlike the invasive processes of stripping and ligation, obtaining percutaneous access to a vein under local anesthesia and using a form of directed laser energy from the inside to shrink and seal the targeted vein allow for quick patient recovery (Figure 2).

Figure 2.

Clinical Improvement 6 weeks after treatment of the LSV with endovenous ablation

Endovenous ablation was first performed by inserting a bipolar radiofrequency (RF) fiber into a targeted varicose or refluxing saphenous vein and heating from within.[3] With more than 60,000 procedures performed worldwide since 1999, radiofrequency shrinkage of veins has become a valuable addition to treating large varicose veins resulting from saphenous reflux. Today, systems are also available that utilize various infrared wavelengths to accomplish endoluminal heating and shrinkage of saphenous trunks. This article will focus on two types of endovenous treatment using laser: laser targeting hemoglobin (810nm, 940nm, and 980nm) and laser: laser targeting water (1320nm).

Comments

3090D553-9492-4563-8681-AD288FA52ACE

processing....