The Dual Action of Ozone on the Skin

G. Valacchi; V. Fortino; V. Bocci


The British Journal of Dermatology. 2005;153(6):1096-1100. 

In This Article

Summary and Introduction

The aim of this brief review is to summarize the recent literature on the effect of ozone (O3) on cutaneous tissues. Recently it has been reported that a chronic contact with O3 can be deleterious for the skin. Our group and others have shown a progressive depletion of antioxidant content in the stratum corneum and this can then lead to a cascade of effects resulting in an active cellular response in the deeper layers of the skin. Using an in vivo model we have shown an increase of proliferative, adaptive and proinflammatory cutaneous tissue responses. On the other hand the well known activity of O3 as a potent disinfectant and oxygen (O2) donor has been also studied for therapeutic use. Two approaches have been described. The first consists of a quasi-total body exposure in a thermostatically controlled cabin. This treatment has proved to be useful in patients with chronic limb ischaemia. The second approach is based on the topical application of ozonated olive oil in several kinds of skin infection (from soreness to diabetic ulcers, burns, traumatic and surgical wounds, abscesses and skin reactions after radiotherapy). We and other authors have observed a striking cleansing effect with improved oxygenation and enhanced healing of these conditions. It is now clear that, on the skin, O3, like other drugs, poisons and radiation, can display either a damaging effect from a long exposure or a beneficial effect after a brief exposure to O2 and O3 or to the application of ozonated oil to chronic wounds.

Christian Friedrich Schonbein discovered ozone (O3) in 1839 and in 1853 he made the first measurement of O3 in the Austrian mountains. Today, we know that some gases such as O3, carbon monoxide, nitric oxide and carbon dioxide can have dual actions, behaving either as useful or as harmful agents.[1]

The O3 layer is located at an altitude of about 22 km. Approximately 90% of the O3 in the atmosphere resides in the stratosphere. The O3 concentration in this region is about 10 parts per million by volume. O3 absorbs the bulk of solar ultraviolet (UV) radiation in the wavelengths from 290 to 320 nm. These wavelengths are harmful to life because they can be absorbed by the nucleic acid in cells and damage it. Increased penetration of UV radiation to the planet's surface would damage plant life and have harmful environmental consequences. Appreciably increased amounts of solar UV radiation at the Earth's surface would result in a host of biological effects, such as a dramatic increase in cancer; it seems that a 10% drop in the level of the O3 layer may cause a 25% increase in skin carcinoma and melanoma.[2] Moreover this risk has recently been enhanced by excessive pollution with O3 in the troposphere, particularly evident during summertime in large cities.[3] Thus the strong oxidative power of O3 in association with other contaminants, can be harmful for plants and animals. The human bronchopulmonary system and the skin are the most accessible targets; they are vulnerable owing to the paucity of local antioxidant defences. O3 toxicity for the pulmonary system has been extensively examined while attention to the skin problem is more recent but no less important.

An interesting difference that we would like to point out here is that while the pulmonary system is absolutely intolerant to O3 and this gas should never be inhaled, the skin, for anatomical and biochemical reasons, is somewhat more resistant. Recent literature points out that although a long exposure is certainly deleterious, transitory exposure at low and precisely controlled O3 concentrations can have useful effects. The damage to the respiratory tract by oxidative environmental pollutants such as O3 and nitrogen oxides have already been reviewed[4] while recent literature has focused only on the damaging interaction between long exposures to O3 and cutaneous tissues.[5,6,7,8,9,10]

We believe that it is now also correct to discuss the unexpected therapeutic effect of a brief exposure of patients to O3 or the use of ozonated oil for cutaneous infections.


Comments on Medscape are moderated and should be professional in tone and on topic. You must declare any conflicts of interest related to your comments and responses. Please see our Commenting Guide for further information. We reserve the right to remove posts at our sole discretion.