Robotic Surgery: Applications, Limitations, and Impact on Surgical Education

Bishoy Morris, MBBCH (Hons)

Disclosures
In This Article

What Is Robotic Surgery?

A surgical robot is a self-powered, computer-controlled device that can be programmed to aid in the positioning and manipulation of surgical instruments, enabling the surgeon to carry out more complex tasks.[1] Systems currently in use are not intended to act independently from human surgeons or to replace them.[9] Instead, these machines act as remote extensions completely governed by the surgeon and thus are best described as master-slave manipulators.[1] Two master-slave systems have received approval by the US Food and Drug Administration (FDA) and are in use[1,5] -- the da Vinci Surgical System (Intuitive Surgical, Mountain View, California)[10,11] and the ZEUS system (Computer Motion, Goleta, California).[1,12] Each system has 2 basic components linked together through data cables and a computer:[1,2,3,5]

  • The surgeon's master console is the robot's user interface that provides the master surgeon with the following functions:

    • A 3-dimensional view of the surgical field relayed from an endoscopic camera inside the patients body in control of the robot that creates a sense of being "immersed" into the surgical field.

    • Master manipulators, which are handles or joysticks that the surgeon uses to make surgical movements that are then translated into real-time movements of the slave manipulators docked on the patient. Motion scaling (conversion of large natural movements to ultraprecise micromovements)[13] and tremor filtering increase accuracy and precision of the surgeon's movements.[14]

    • A control panel to adjust other functions, such as focusing of the camera, motion scaling, and accessory units.

     

  • Patient-side slave robotic manipulators are robotic arms that manipulate the surgical instruments and the camera through laparoscopic ports connected to the patient's body. The da Vinci system handles surgical instruments with microarticulations near the tip (EndoWrist) that can duplicate motions of the human wrist, including rotation (7 degrees of freedom, ie, the greatest possible motion around a joint).[1,11]

Comments

3090D553-9492-4563-8681-AD288FA52ACE
Comments on Medscape are moderated and should be professional in tone and on topic. You must declare any conflicts of interest related to your comments and responses. Please see our Commenting Guide for further information. We reserve the right to remove posts at our sole discretion.

processing....