Epigenetics Changes in Cancer Cells

Highlights of the American Association for Cancer Research Special Conference on Chromatin, Chromosomes, and Cancer Epigenetics; November 10-14, 2004; Waikoloa, Hawaii

Kris Novak, PhD

Disclosures
In This Article

Introduction

Cancer is a genetic disease initiated by alterations in genes, such as oncogenes and tumor suppressors, that regulate cell proliferation, survival, and other homeostatic functions. In cancer cells, genes are either modified by mutations, which alter the function of the proteins they encode, or through epigenetics -- modifications to chromosomes that alter gene-expression patterns. This can occur through DNA methylation, and methylation, acetylation, or phosphorylation of histones and other proteins around which DNA is wound to form chromatin. Little is known about how these chemical modifications occur in the DNA of cancer cells, but they can affect the expression patterns of oncogenes or of tumor suppressor genes. For example, DNA methylation induces "epigenetic silencing" or the loss of expression of tumor suppressor genes, causing normal cells to be transformed into cancer cells.[1]

The conference recently held by the American Association for Cancer Research on Chromatin, Chromosomes, and Cancer Epigenetics in Waikoloa, Hawaii, brought together almost 300 of the world's leading researchers in this field. They discussed the chromosome regions and genes that most commonly undergo epigenetic alterations in cancer cells, ways of identifying epigenetic modifications in cancer cells, and possible therapies to reverse this process.

Comments

3090D553-9492-4563-8681-AD288FA52ACE
Comments on Medscape are moderated and should be professional in tone and on topic. You must declare any conflicts of interest related to your comments and responses. Please see our Commenting Guide for further information. We reserve the right to remove posts at our sole discretion.
Post as:

processing....