Growth Hormone, Acromegaly, and Heart Failure: An Intricate Triangulation

Luigi Saccà, Raffaele Napoli, Antonio Cittadini

Disclosures

Clin Endocrinol. 2003;59(6) 

In This Article

Introduction

Short-term GH or IGF-I excess provides a model of physiological cardiac growth associated with functional advantage. The physiological nature of cardiac growth is accounted for by the following: (i) the increment in cardiomyocyte size occurs prevalently at expense of the short axis. This is the basis for the concentric pattern of left ventricular (LV) hypertrophy, with consequent fall in LV wall stress and functional improvement; (ii) cardiomyocyte growth is associated with improved contractility and relaxation, and a favourable energetic setting; (iii) the capillary density of the myocardial tissue is not affected; (iv) there is a balanced growth of cardiomyocytes and nonmyocyte elements, which accounts for the lack of interstitial fibrosis; (v) myocardial energetics and mechanics are not perturbed; and (vi) the growth response is not associated with the gene re-programming that characterizes pathologic cardiac hypertrophy and heart failure. Overall, the mechanisms activated by GH or IGF-I appear to be entirely different from those of chronic heart failure. Not to be neglected is also the fact that GH, through its nitric oxide (NO)-releasing action, contributes to the maintenance of normal vascular reactivity and peripheral vascular resistance. This particular kind of interaction of GH with the cardiovascular system accounts for: (i) the lack of cardiac impairment in short-term acromegaly; (ii) the beneficial effects of GH and IGF-I in various models of heart failure; (iii) the protective effect of GH and IGF-I against post-infarction ventricular remodelling; (iv) the reversal of endothelial dysfunction in patients with heart failure treated with GH; and (v) the cardiac abnormalities associated with GH deficiency and their correction after GH therapy. If it is clear that GH and IGF-I exert favourable effects on the heart in the short term, it is equally undeniable that GH excess with time causes pathologic cardiac hypertrophy and, if it is not corrected, eventually leads to cardiac failure. Why then, at one point in time in the natural history of acromegaly, does physiological cardiac growth become maladaptive and translate into heart failure? Before this transition takes places, the acromegalic heart shares very few features with other models of chronic heart failure. None of the mechanisms involved in the progression of heart failure is clearly operative in acromegaly, save for the presence of insulin-resistance and mild alterations of lipoproteins and clot factors. Is this enough to account for the development of heart failure? Probably not. On the other hand, it must be stressed that GH and IGF-I activate several mechanisms that play a protective role against the development of heart failure. These include ventricular unloading, deactivation of neurohormonal components, antiapoptotic effect and enhanced vascular reactivity. Ultimately, all data available concur to hypothesize that acromegalic cardiomyopathy represents a progressive model of cardiac hypertrophy in which the cardiotoxic and pro-remodelling effect is intrinsic to the excessive and unrestrained myocardial growth.

Comments

3090D553-9492-4563-8681-AD288FA52ACE

processing....