What is the pathophysiology of pediatric hemolytic uremic syndrome (HUS)?

Updated: Nov 12, 2018
  • Author: Robert S Gillespie, MD, MPH; Chief Editor: Craig B Langman, MD  more...
  • Print
Answer

STEC-HUS is usually preceded by a colitis caused by Shiga toxin–producing Escherichia coli (STEC). Subsequent inflammation of the colon facilitates systemic absorption of the Stx and lipopolysaccharide from the GI tract. The major toxins that cause hemolytic-uremic syndrome, Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2), are similar in structure to the classic Stx. These toxins bind to globotriaosylceramide (Gb3), a glycolipid receptor molecule on the surface of endothelial cells in the gut, kidney, and, occasionally, other organs. Differential expression of Gb3 on glomerular capillaries compared with other endothelial cells may explain the predominance of renal injury. Damaged endothelial cells of the glomerular capillaries release vasoactive and platelet-aggregating substances. The endothelial cells swell, and fibrin is deposited on the injured vessel walls.

Swelling and microthrombi formation within the glomerular capillaries produce a localized intravascular coagulopathy. The glomerular filtration rate is reduced, and renal insufficiency ensues. Erythrocytes are damaged and fragmented as they traverse the narrowed glomerular capillaries. This leads to the characteristic microangiopathic hemolytic anemia. Hemolysis may also be a result of lipid peroxidation. See the image below.

Peripheral blood smear in hemolytic-uremic syndrom Peripheral blood smear in hemolytic-uremic syndrome (HUS) showing many schistocytes and RBC fragments due to hemolysis, and relatively few platelets reflective of thrombocytopenia.

Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!