What is the functional anatomy of the shoulder muscles in rotator cuff injuries?

Updated: Oct 25, 2018
  • Author: Gerard A Malanga, MD; Chief Editor: Craig C Young, MD  more...
  • Print
Answer

Electromyography (EMG) studies have demonstrated a high degree of supraspinatus activity during the initial 30° of abduction. This has been misinterpreted to imply that the supraspinatus initiates shoulder abduction and acts to abduct the shoulder in the first 30°. In actuality, the supraspinatus fires to stabilize the GH joint as the deltoid abducts the arm. [15, 16, 17, 18, 19]

Increased EMG activity in the supraspinatus during the initial 30° is a reflection of increased firing requirements of this muscle to stabilize the GH joint as the deltoid is activated. The infraspinatus and teres minor muscles assist in external rotation of the shoulder and also provide an inferior pull upon the humeral head, assisting in its centering during overhead activity. The subscapularis muscle participates in this centering but also acts with the pectoralis muscles and latissimus dorsi as an internal rotator of the shoulder, serving as the main internal rotators of the shoulder.

Weakness or insufficiency of the rotator cuff muscles results in increasing demands on the static stabilizers. If these demands are long term or recurrent, static stabilizers may begin to fail. This can result in stretching or attenuation of the capsule, which results in even greater shoulder laxity and greater demands on the already weak rotator cuff muscles. Humeral head migration may occur with capsule laxity and result in rotator cuff impingement and pain. Pain may inhibit rotator cuff muscle firing, leading to disuse and further weakening of the dynamic stabilizers with greater demands placed on the static stabilizers.

Increased humeral head translation can also lead to shearing and injury to the glenoid labrum. Rotator cuff impingement, tendinitis, and labral pathology are commonly encountered injury patterns in athletes and workers who perform overhead motions. Focusing solely on the static stabilizers in treatment neglects the dynamic structures that probably initiate and perpetuate the cycle.


Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!