What is the functional anatomy of normal shoulder motion in relation to rotator cuff injuries?

Updated: Oct 25, 2018
  • Author: Gerard A Malanga, MD; Chief Editor: Craig C Young, MD  more...
  • Print
Answer

The shoulder complex is comprised of several joints, including the sternoclavicular joint, acromioclavicular joint, glenohumeral (GH) joint, and scapulothoracic (ST) joint or pseudoarticulation. These articulations work together to carry out normal shoulder motion. The majority of motion occurs at the GH and ST joints. A rhythm between these 2 areas of motion has been described. [1, 3, 7, 8, 9, 10, 11, 12]

The GH–to–ST motion ratio of total shoulder motion is 2:1 (ie, 180° of abduction, consisting of 120° of GH motion and 60° of ST motion). The 2:1 ratio is an average over the entire arc of motion. This ratio changes through the arc of motion (ie, the 2:1 ratio is not constant throughout the entire range of motion [ROM]). In the initial portion of abduction, GH motion predominates and the ratio is 4:1 (GH:ST). As the shoulder moves above 90° of abduction, this ratio becomes 1:1° GH to 1° ST motion.

The importance of the scapula in normal shoulder motion cannot be overstated. The scapula, with the glenoid as its contact point, forms the platform for humeral head articulation and motion. A stable platform is essential for normal shoulder biomechanics in everyday activities and is crucial for high-demand activities (eg, overhead sports or work). [13]

The scapula must glide along the chest wall as it protracts and retracts during normal shoulder movements. Scapular winging results in glenoid antetilting, which results in functional elevation of the humeral head and impingement of the rotator cuff. In addition, without scapular motion, the origin and insertion of the deltoid approximate each other, resulting in a decreased optimal length-tension relationship and a decrease in force as the shoulder abducts. Normal scapular motion allows the deltoid to maintain its length-tension relationship and generate adequate force.


Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!