What is the pathophysiology of smoke inhalation caused by Teflon particles?

Updated: Oct 15, 2021
  • Author: Keith A Lafferty, MD; Chief Editor: Joe Alcock, MD, MS  more...
  • Print

Teflon is used widely, for a variety of purposes (eg, as lubricants, insulators, nonstick coatings), in a range of industrial, commercial, and military settings. Closed-space fires in such settings have prompted studies of the toxicity of exposure to the by-products created from incinerated organofluorines. Pyrolysis of Teflon produces a particulate smoke that, if inhaled, produces a constellation of symptoms termed polymer fume fever (PFF).

Pyrolysis of Teflon occurs at approximately 450°C. Among the particles produced by pyrolysis is perfluoroisobutylene (PFIB), which appears to be the main cause of toxicity in PFF. The ultrafine particles initiate a severe inflammatory response at low inhaled particle mass concentrations, which suggests an oxidative injury. PMNs may regulate the inflammatory process with cytokine and antioxidant expression.

PFIB particles have an extremely rapid toxic effect on pulmonary tissues. Evidence of microscopic perivascular edema is observed within 5 minutes. Less intense exposures are followed by a latent period during which normal physiologic compensatory measures to control developing pulmonary edema ensue. Once these mechanisms are overcome, the time frame of which depends on the degree of exposure, the clinical syndrome of PFF follows.

More intense exposures also may produce a chemical conjunctivitis. Hemorrhagic inflammation of the lungs also can occur.

Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!