What is the pathophysiology of hyponatremia?

Updated: Dec 28, 2018
  • Author: Kartik Shah, MD; Chief Editor: Romesh Khardori, MD, PhD, FACP  more...
  • Print
Answer

Serum sodium concentration is regulated by stimulation of thirst, secretion of ADH, feedback mechanisms of the renin-angiotensin-aldosterone system, and variations in renal handling of filtered sodium. Increases in serum osmolarity above the normal range (280-300 mOsm/kg) stimulate hypothalamic osmoreceptors, which, in turn, cause an increase in thirst and in circulating levels of ADH. ADH increases free water reabsorption from the urine, yielding urine of low volume and relatively high osmolarity and, as a result, returning serum osmolarity to normal. ADH is also secreted in response to hypovolemia, pain, fear, nausea, and hypoxia.

Aldosterone, synthesized by the adrenal cortex, is regulated primarily by serum potassium but also is released in response to hypovolemia through the renin-angiotensin-aldosterone axis. Aldosterone causes absorption of sodium at the distal renal tubule. Sodium retention obligates free water retention, helping to correct the hypovolemic state. The healthy kidney regulates sodium balance independently of ADH or aldosterone by varying the degree of sodium absorption at the distal tubule. Hypovolemic states, such as hemorrhage or dehydration, prompt increases in sodium absorption in the proximal tubule. Increases in vascular volume suppress tubular sodium reabsorption, resulting in natriuresis and helping to restore normal vascular volume. Generally, disorders of sodium balance can be traced to a disturbance in thirst or water acquisition, ADH, aldosterone, or renal sodium transport.

Hyponatremia is physiologically significant when it indicates a state of extracellular hyposmolarity and a tendency for free water to shift from the vascular space to the intracellular space. Although cellular edema is well tolerated by most tissues, it is not well tolerated within the rigid confines of the bony calvarium. Therefore, clinical manifestations of hyponatremia are related primarily to cerebral edema. The rate of development of hyponatremia plays a critical role in its pathophysiology and subsequent treatment. When serum sodium concentration falls slowly, over a period of several days or weeks, the brain is capable of compensating by extrusion of solutes and fluid to the extracellular space. Compensatory extrusion of solutes reduces the flow of free water into the intracellular space, and symptoms are much milder for a given degree of hyponatremia.

When serum sodium concentration falls rapidly, over a period of 24-48 hours, this compensatory mechanism is overwhelmed and severe cerebral edema may ensue, resulting in brainstem herniation and death.


Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!