What is the role of electrical stimulation in urinary incontinence treatment?

Updated: Sep 23, 2019
  • Author: Sandip P Vasavada, MD; Chief Editor: Edward David Kim, MD, FACS  more...
  • Print
Answer

Electrical stimulation is a more sophisticated form of biofeedback used for pelvic floor muscle rehabilitation. This treatment involves stimulation of levator ani muscles using painless electric currents.

Electrical stimulation of pelvic floor muscles produces a contraction of the levator ani muscles and external urethral sphincter while inhibiting bladder contraction. This therapy depends on a preserved reflex arc through the intact sacral micturition center. Similar to biofeedback, electrical stimulation can be performed at the office or at home. Electrical stimulation can be used in conjunction with biofeedback or pelvic floor muscle exercises.

Electrical stimulation therapy requires a similar type of probe and equipment as those used for biofeedback. This form of muscle rehabilitation is similar to the biofeedback therapy, except small electric currents are used. Nonimplantable pelvic floor electrical stimulation uses vaginal sensors, anal sensors, or surface electrodes. Adverse reactions are minimal.

Like biofeedback, pelvic floor muscle electrical stimulation has proved effective in treating female stress incontinence. It may be effective in men and women with urge or mixed incontinence. Urge incontinence secondary to neurologic diseases may be decreased with this therapy. Unfortunately, this treatment does not appear to benefit patients who are cognitively impaired.

Electrical stimulation may be the most beneficial when stress incontinence and very weak or damaged pelvic floor muscles coexist. A regimented program of electrical stimulation helps these weakened pelvic muscles contract so they can become stronger. For women with urge incontinence, electrical stimulation may help the bladder relax and prevent it from contracting involuntarily.

Electrical stimulation appears to be the most effective when augmented with pelvic floor exercises. In order to derive significant benefit, stimulation must be performed for a minimum of 4 weeks, and patients must continue pelvic floor exercises after the treatment.

The 2 main modes of electrical stimulation therapy are long-term stimulation and short-term maximal stimulation. Long-term therapy requires the use of an intravaginal or intra-anal probe for several hours a day. Low intensity, subthreshold stimulation is used. Patient acceptance can be low due to the discomfort of wearing the probe for several hours each day.

Short-term maximal stimulation therapy was developed because it is more practical, and high intensity stimulation may produce a better inhibitory effect. Maximal inhibition of involuntary bladder contractions takes place at stimulation intensity levels that are 2-3 times sensory threshold levels. The closer the proximity of the stimulating device to the selected nerve, the lower the intensity can be and remain effective. In practical terms, maximal tolerance levels usually are approximately 1.5-2 times the sensory perception threshold.

Short-term maximal therapy uses high-intensity stimulation for 15-30 minutes once or twice a day. Treatment generally is continued over several weeks. Improvement rates of 52-77% have been documented. Carryover effects of 31-92% have been shown for as long as 1 year after therapy.

Transcutaneous electrical nerve stimulation (TENS) has been tried in patients with detrusor overactivity, using several different methods. Applying a positive electrode applied to the area of the anal sphincter and a negative electrode to the posterior tibial nerve has yielded mixed results in 2 studies. TENS of the S2-S3 dermatomes has been tried with some success.

An interesting method of alternating stimulation of the hamstring and quadriceps muscle groups has been reported. In this study, which included patients with detrusor overactivity, 20 minutes of stimulation per day was given for 14 consecutive days and clinical improvement was observed in 68% of subjects. The mechanism of detrusor inhibition by this method of TENS is unclear but may involve increases in segmental inhibitory tone due to manipulation of peripheral neural input.

Interferential therapy is a type of TENS in which external electrodes are positioned over the pelvis, and the interference produced by the competing electrical fields produces low-level nerve stimulation in the area of interference. A small study showed a 90% improvement rate in 20 patients with detrusor instability that was unresponsive to pharmacotherapy. In 18 months of observation, no complications were reported, and no recurrences were observed.


Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!