What is the anatomy relevant to erectile dysfunction (ED)?

Updated: Aug 08, 2018
  • Author: Edward David Kim, MD, FACS; Chief Editor: Edward David Kim, MD, FACS  more...
  • Print
Answer

An understanding of penile anatomy is fundamental to management of ED. [2] The common penile artery, which derives from the internal pudendal artery, branches into the dorsal, bulbourethral, and cavernous arteries (see the image below).

Vascular anatomy of the penis. Vascular anatomy of the penis.

The dorsal artery provides for engorgement of the glans during erection, whereas the bulbourethral artery supplies the bulb and the corpus spongiosum. The cavernous artery effects tumescence of the corpus cavernosum and thus is principally responsible for erection. The cavernous artery gives off many helicine arteries, which supply the trabecular erectile tissue and the sinusoids. These helicine arteries are contracted and tortuous in the flaccid state and become dilated and straight during erection. [9]

Venous drainage of the corpora originates in tiny venules that lead from the peripheral sinusoids immediately beneath the tunica albuginea. These venules travel in the trabeculae between the tunica and the peripheral sinusoids to form the subtunical venous plexus before exiting as the emissary veins (see the image below). [9]

These images depict penile anatomy. Note the sinus These images depict penile anatomy. Note the sinusoidal makeup of the corpora and thick fascia (ie, Buck fascia) that covers the corpora cavernosa. The major blood vessels to the corpora cavernosa enter through tributaries from the main vessels running along the dorsum of the penis.

Sexual behavior involves the participation of autonomic and somatic nerves and the integration of numerous spinal and supraspinal sites in the central nervous system (CNS). The penile portion of the process that leads to erections represents only a single component.

The hypothalamic and limbic pathways play an important role in the integration and control of reproductive and sexual functions. The medial preoptic center, paraventricular nucleus, and anterior hypothalamic regions modulate erections and coordinate autonomic events associated with sexual responses.

Afferent information is assessed in the forebrain and relayed to the hypothalamus. The efferent pathways from the hypothalamus enter the medial forebrain bundle and project caudally near the lateral part of the substantia nigra into the midbrain tegmental region.

Several pathways have been described to explain how information travels from the hypothalamus to the sacral autonomic centers. One pathway travels from the dorsomedial hypothalamus through the dorsal and central gray matter, descends to the locus ceruleus, and projects ventrally in the mesencephalic reticular formation. Input from the brain is conveyed through the dorsal spinal columns to the thoracolumbar and sacral autonomic nuclei.

The primary nerve fibers to the penis are from the dorsal nerve of the penis, a branch of the pudendal nerve. The cavernosal nerves are a part of the autonomic nervous system and incorporate both sympathetic and parasympathetic fibers. They travel posterolaterally along the prostate and enter the corpora cavernosa and corpus spongiosum to regulate blood flow during erection and detumescence. The dorsal somatic nerves are also branches of the pudendal nerves. They are primarily responsible for penile sensation. [10]


Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!