What is the role of fluid resuscitation in the initial evaluation of the burn patient?

Updated: Jan 10, 2018
  • Author: Robert L Sheridan, MD; Chief Editor: John Geibel, MD, DSc, MSc, AGAF  more...
  • Print


Burn patients demonstrate a graded capillary leak, which increases with injury size, delay in initiation of resuscitation, and the presence of inhalation injury for the first 18-24 hours after injury. Because the changes are different in every patient, fluid resuscitation can only be loosely guided by formulas. [25]  The inherent inaccuracy of formulas requires continuous reevaluation and adjustment of infusions based on resuscitation targets. [26]

Most formulas recommend that all crystalloid be isotonic during the first 24 hours, generally Ringer lactate solution. Hypertonic saline has been recommended for resuscitation, but this practice has largely been abandoned because it is technically challenging and is not associated with improved clinical outcomes. In smaller children, whose gluconeogenetic capacity is immature, hypoglycemia is a threat and Ringer lactate solution with 5% dextrose should be added at a maintenance rate.

The modified Brooke or Parkland formulas are reasonable consensus formulas and are used to help determine the initial volume of infusion. Half of the total calculated 24-hour volume is administered in the first 8 hours post injury. Should the resuscitation be delayed, this volume is administered so that infusion is completed by the end of the eighth hour post injury. After 18-24 hours, capillary integrity generally returns and fluid administration should be decreased, following resuscitation endpoints. At this point, colloid administration is useful, generally 5% albumin in Ringer lactate solution. Increasingly, providers are replacing a portion of the calculated crystalloid with 5% albumin in patients with large deep burns. [27]

As a general rule, burns over less than 15% of the body surface area are not associated with an extensive capillary leak, and children with burns of this size can be treated with fluid administered at 150% of a calculated maintenance rate and close observation of their hydration status. Those who are able and willing to take fluid by mouth may be given fluid by mouth, with additional fluid administered intravenously at a maintenance rate.

Pigmented urine is commonly seen in the setting of high-voltage or very deep thermal injury. [12] This pigment should be cleared promptly to avoid renal failure. This can usually be achieved through the administration of additional crystalloid. The administration of bicarbonate may facilitate clearance of myoglobin by preventing its entry into the tubular cells. In rare circumstances, loop diuretics or mannitol can be useful, but this obscures urine output as a valid indicator of circulating volume.

Electrolyte levels should be carefully monitored and corrected. Cerebral edema and seizures can occur with severe hyponatremia, and rapid correction of hyponatremia may result in central pontine demyelinating lesions. Serum sodium, potassium, ionized calcium, phosphorous, and magnesium levels should be monitored and kept within physiologic range. Ideally, begin enteral feedings during resuscitation, except in patients with massive injuries or those who are underresuscitated and less likely to tolerate tube feedings because of ileus secondary to splanchnic underperfusion.

Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!