What is the cerebrovascular arterial anatomy relevant to stroke?

Updated: Nov 30, 2018
  • Author: Andrew Danziger; Chief Editor: L Gill Naul, MD  more...
  • Print
Answer

Knowledge of cerebrovascular arterial anatomy and the territories supplied by each is useful in determining which vessel or vessels are involved in acute stroke. Atypical patterns that do not conform to a vascular distribution may indicate another diagnosis, such as venous infarction.

The cerebral hemispheres are supplied by 3 paired major arteries: the anterior, middle, and posterior cerebral arteries. The anterior and middle cerebral arteries comprise the anterior circulation and arise from the supraclinoid internal carotid arteries. The anterior cerebral artery supplies the medial portion of the frontal and parietal lobes and anterior portions of basal ganglia and anterior internal capsule. The middle cerebral artery supplies the lateral portions of the frontal and parietal lobes and the anterior and lateral portions of the temporal lobes and gives rise to perforating branches to the globus pallidus, putamen, and internal capsule.

The posterior cerebral arteries arise from the basilar artery and form the posterior circulation. The posterior cerebral artery gives rise to perforating branches that supply the thalami and brainstem and cortical branches to the posterior and medial temporal lobes and occipital lobes. The cerebellar hemispheres are supplied inferiorly by the posterior inferior cerebellar artery (PICA) arising from the vertebral artery, superiorly by the superior cerebellar artery, and anterolaterally by the anterior inferior cerebellar artery (AICA) (see the images below).

Frontal view of a cerebral angiogram with selectiv Frontal view of a cerebral angiogram with selective injection of the left internal carotid artery illustrates the anterior circulation. The anterior cerebral artery consists of the A1 segment proximal to the anterior communicating artery with the A2 segment distal to it. The MCA can be divided into 4 segments: the M1 (horizontal segment) extends to the limen insulae and gives off lateral lenticulostriate branches, the M2 (insular segment), M3 (opercular branches) and M4 (distal cortical branches on the lateral hemispheric convexities).
Lateral view of a cerebral angiogram illustrates t Lateral view of a cerebral angiogram illustrates the branches of the anterior cerebral artery and Sylvian triangle. The pericallosal artery has been described to arise distal to the anterior communicating artery or distal to the the origin of the callosomarginal branch of the anterior cerebral artery (ACA). The segmental anatomy of the ACA has been described as follows: the A1 segment extends from the internal carotid artery (ICA) bifurcation to the anterior communicating artery; A2 extends to the junction of the rostrum and genu of the corpus callosum; A3 extends into the bend of the genu of the corpus callosum; A4 and A5 extend posteriorly above the callosal body and superior portion of the splenium. The Sylvian triangle overlies the opercular branches of the middle cerebral artery (MCA), with the apex representing the Sylvian point.
Frontal projection from a right vertebral artery a Frontal projection from a right vertebral artery angiogram illustrates the posterior circulation. The vertebral arteries join to form the basilar artery. The posterior inferior cerebellar arteries (PICA) arise from the distal vertebral arteries. The anterior inferior cerebellar arteries (AICA) arise from the proximal basilar artery. The superior cerebellar arteries (SICA) arise distally from the basilar artery prior to its bifurcation into the posterior cerebral arteries.

The anterior cerebral artery supplies the following structures:

  • Cortical branches - Medial frontal and parietal lobe

  • Medial lenticulostriate branches - Caudate head, globus pallidus, anterior limb of the internal capsule

The middle cerebral artery supplies the following structures:

  • Cortical branches - Lateral frontal and parietal lobes, lateral and anterior temporal lobe

  • Lateral lenticulostriate branches - Globus pallidus and putamen, internal capsule

The anterior choroidal artery supplies the following structures:

  • Optic tracts

  • Medial temporal lobe

  • Ventrolateral thalamus

  • Corona radiata

  • Posterior limb of the internal capsule

The posterior cerebral artery supplies the following structures:

  • Cortical branches - Occipital lobes, medial and posterior temporal and parietal lobes

  • Perforating branches - Brainstem, posterior thalamus, and midbrain

The posterior inferior cerebellar artery supplies the following structures:

  • Inferior vermis

  • Posterior and inferior cerebellar hemispheres

The anterior inferior cerebellar artery supplies the following structure:

  • Anterolateral cerebellum

The superior cerebellar artery supplies the following structures:

  • Superior vermis

  • Superior cerebellum (see the image below)

    The supratentorial vascular territories of the maj The supratentorial vascular territories of the major cerebral arteries are demonstrated superimposed on axial (left) and coronal (right) T2-weighted images through the level of the basal ganglia and thalami. The middle cerebral artery (MCA; red) supplies the lateral aspects of the hemispheres, including the lateral frontal, parietal and anterior temporal lobes, insula, and basal ganglia. The anterior cerebral artery (ACA; blue) supplies the medial frontal and parietal lobes. The posterior cerebral artery (PCA; green) supplies the thalami and occipital and inferior temporal lobes. The anterior choroidal artery (yellow) supplies the posterior limb of the internal capsule and part of the hippocampus extending to the anterior and superior surface of the occipital horn of the lateral ventricle.

(Images below illustrate vascular distributions.)

Vascular distributions: Middle cerebral artery (MC Vascular distributions: Middle cerebral artery (MCA) infarction. Noncontrast CT scan demonstrates a large acute infarction in the MCA territory involving the lateral surfaces of the left frontal, parietal, and temporal lobes as well as the left insular and subinsular regions with mass effect and rightward midline shift. The caudate head is spared, and at least part of the lentiform nucleus and internal capsule, which receive blood supply form the lateral lenticulostriate branches of the M1 segment of the MCA. Note the lack of involvement of the medial frontal lobe (anterior cerebral artery territory), thalami and paramedian occipital lobe (posterior cerebral artery territory).
Vascular distributions: anterior cerebral artery ( Vascular distributions: anterior cerebral artery (ACA) infarction. Diffusion-weighted image on the left demonstrates high signal in the paramedian frontal and high parietal regions. The opposite diffusion-weighted image in a different patient demonstrates restricted diffusion in a larger ACA infarction involving the left paramedian frontal and posterior parietal regions. Infarction of the lateral temporoparietal regions bilaterally (both MCA distributions) also exists; it is greater on the left, indicating multivessel involvement suggesting emboli.
Vascular distributions: posterior cerebral artery Vascular distributions: posterior cerebral artery (PCA) infarction. The noncontrast CT images demonstrate PCA distribution infarction involving the right occipital and inferomedial temporal lobes. The image on the right demonstrates additional involvement of the thalamus, also part of the PCA territory.
Vascular distributions: Anterior choroidal artery Vascular distributions: Anterior choroidal artery infarction. The diffusion-weighted image (left) demonstrates high signal with associated signal dropout on the apparent diffusion coefficient (ADC) map involving the posterior limb of the internal capsule. This is the typical distribution of the anterior choroidal artery, the last branch of the internal carotid artery before bifurcating into the anterior and middle cerebral arteries. The anterior choroidal artery may also arise from the middle cerebral artery (MCA).

Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!